
Ann. Zool. Fennici 40: 99–114 ISSN 0003-455X
Helsinki 30 April 2003 © Finnish Zoological and Botanical Publishing Board 2003

Extinction thresholds: insights from simple models

Jordi Bascompte

Estación Biológica de Doñana, CSIC, Apdo. 1056, E-41080 Sevilla, Spain

Received 12 Feb. 2003, revised version received 4 Mar. 2003, accepted 5 Mar. 2003

Bascompte, J. 2003: Extinction thresholds: insights from simple models. — Ann. Zool. Fennici 40: 
99–114.

There are two types of deterministic extinction thresholds: demographic thresholds 
such as the Allee effect, and parametric thresholds such as a critical effective coloniza-
tion rate or a minimum amount of available habitat for metapopulation persistence. I 
introduce briefl y both types of thresholds. First, I discuss the Allee effect in the context 
of eradication strategies of alien species. Then, I consider an example of parametric 
threshold: the critical amount of suitable habitat below which a metapopulation goes 
deterministically extinct. I review how this spatial threshold changes in relation to the 
level of spatial detail and the complexity of the food web. Since classical metapopula-
tion models assume an infi nite number of patches, I proceed by considering how the 
extinction threshold is affected by environmental variability acting on a small number 
of patches. Finally, I consider recent work suggesting that if the network of connectiv-
ity among patches is not random but highly heterogeneous, the extinction threshold 
may disappear.

“We don t̓ record fl owers,” the geographer said.
“Why not? It s̓ the prettiest thing!”
“Because fl owers are ephemeral.”
“What does ephemeral mean?”
“It means, ‘which is threatened by imminent disappearance.ʼ”
(A. de Saint-Exupéry 1943, “The Little Prince.”)

Introduction

Extinction has played a major role in the organi-
zation of life on Earth. Almost all species which 
have existed at some point have already gone 
extinct. This unavoidable outcome, however, 
has been aggravated in the last few centuries 
due to human activity. Since 1600, the extinc-
tion of more than 485 animal and 585 plant spe-
cies has been recorded (Lawton & May 1995), 
although the real number of species going 
extinct due to habitat fragmentation, biological 

invasions, climate change, pollution, and other 
types of environmental disturbance can only be 
guessed.

We face the big challenge of predicting under 
what circumstances extinction will occur. Cur-
rently, there are two main schools of thought 
when dealing with extinction. One deals with 
stochastic processes, assumes that extinction is 
unavoidable, and predicts the time to extinction. 
The other is deterministic and estimates the con-
ditions beyond which a population goes extinct. 
It predicts extinction thresholds, that is, critical 
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values of some variable of interest beyond which 
a population can no longer persist.

In this paper I will review very simple 
deterministic models which predict extinction 
thresholds. In particular, I will focus on demo-
graphic thresholds, that is, critical population 
values below which the population goes extinct, 
and thresholds derived from the reduction in the 
fraction of available patches in a metapopulation 
context. These models are an oversimplifi cation 
of reality, but they can provide rules of thumb to 
better understand extinction. I will explore how 
these thresholds change with the level of spatial 
resolution, the complexity of the food web, and 
the effect of environmental variability acting on 
small networks of patches. One goal is to explore 
whether these simple rules of thumb can be used 
regardless of the models  ̓ simplifying assump-
tions. Finally, I will consider how the shape 
of the connectivity distribution of nodes (e.g., 
patches) may affect the extinction threshold and 
even make it disappear.

Demographic thresholds: the 
Allee effect

The Allee effect is a mechanism fi rst described 
by Allee et al. (1949) and describes any process 
in which any component of fi tness is correlated 
with population size (Courcham et al. 1999, 
Stephens & Sutherland 1999, Stephens et al. 
1999). In a population dynamics context, the 
Allee effect depicts a situation in which popula-
tion growth rate decreases below some critical 
minimum density. In some circumstances this 
growth rate may even be negative, originating 
an extinction threshold. Different mechanisms 
responsible for this demographic threshold are 
failure to locate males, failure to satiate preda-
tors, and inbreeding depression.

The Allee effect can be incorporated into 
a logistic growth model in the following way 
(Dennis 1989, Amarasekare 1998, Keitt et al. 
2001):

                     (1)

where n is population size, g is the intrinsic rate 
of natural increase, k is the carrying capacity, and 

c is the threshold population size below which 
F(n) < 0.

In the absence of the Allee effect, F(n) is 
always positive, as shown in Fig. 1. For this 
situation there is a single solution, n* = k, which 
is stable. On the other hand, Eq. 1 has two solu-
tions, n* = k which is again stable, and n* = c, 
which is unstable (population either increases or 
decreases towards extinction, Fig. 1).

A model like Eq. 1 may seem an oversimpli-
fi cation of reality, multiple factors are missing. 
However, it defi nes a threshold in very simple 
terms. One can plot the change in population 
size for different values of n in real data, and 
detect whether growth rate becomes negative at 
some critical density. One does not need further 
biological details. Also, although the previous 
model is deterministic, the Allee effect and 
demographic stochasticity may interact to drive 
a population extinct (Lande 1998, Dennis 2002). 
Furthermore, demographic stochasticity by 
itself can cause a population to decrease, which 
would constitute a type of stochastic Allee effect 
(Lande 1998).

The importance of the Allee dynamics in 
extinction has been widely explored in the 
context of conservation biology (Lande 1988, 
Groom 1998). Endangered species tend to have 
small densities, and under this situation, they 
may go extinct due to the Allee effect, demo-
graphic stochasticity, or a combination of both. 
This interaction between stochastic processes 
and the Allee effect is also important in determin-
ing the likelihood of successful establishment by 
alien species (Hacou & Iwasa 1996, Fagan et al. 
2002, Petrovskii et al. 2002), and the extent of 
the range expansion during invasions (Lewis & 
Kareiva 1993, Keitt et al. 2001).

However, almost no study has incorporated 
the Allee effect in the context of biological con-
trol. Large efforts to eradicate alien animal and 
plant species have increased with the accelera-
tion in the arrival of alien species due to global 
travel and commerce (Simberloff 2001). The 
introduction of alien species is now believed to 
be one of the major causes of biodiversity loss 
worldwide. It is usually accepted in studies of 
pest eradication, that eradication can only be 
achieved by the elimination of all the individuals. 
Liebhold and Bascompte (2003) have studied the 
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combined role of stochasticity and Allee effect 
on the extinction of isolated populations follow-
ing eradication treatments. As a case study, they 
used historical data on the dynamics of isolated 
populations of gypsy moth (Lymantria dispar) 
in North America. This insect species, a native 
to most of the temperate forest in Eurasia, was 
accidentally introduced in the east coast of the 
USA in 1869. Since then, it has been expand-
ing through northeastern USA and southeastern 
Canada, where it has defoliated large forest areas 
(Liebhold et al. 1992). 

Liebhold and Bascompte (2003) used tempo-
ral data on the total number of males of gypsy 
moth caught in pheromone traps to fi t parameters 
of a discrete time version of Eq. 1, which can be 
written as follows: 

                               (2)

where r
t
 = n

t + 1
/n

t
 is the change in population 

density, and other parameters are as in Eq. 1. It 
can be noticed that when populations are very 
low, x

t
 is insignifi cant compared with k and thus 

(x
t 
/k) ~ 0. Equation 2 then becomes:

                      (3)

In this way, at the very low densities observed 
at the initial stages of a biological invasion, the 
Allee effect can be represented simply by ln(r

t
) 

as a linear function of n
t
, with intercept –cg /k 

and slope g /k (Liebhold & Bascompte 2003). 
By fi tting the data on gypsy moth populations to 
Eq. 3, Liebhold and Bascompte (2003) estimated 
the Allee extinction threshold as the negative 
intercept (–cg /k) divided by the slope (g /k), 
which yield c ~ 107 males trapped per colony. 
Thus, when the number of males is lower than 
this threshold, the population will go determin-
istically extinct. Note, however, that the Allee 
effect interacts with environmental stochasticity, 
which would transform the extinction threshold 
into a probability function (Lande 1998, Dennis 
2002, Liebhold & Bascompte 2003). Thus, Lie-
bhold and Bascompte (2003) modifi ed Eq. 3 to 
add an additive environmental noise term, which 
is estimated from the data as the SD of the resid-
uals (this makes the simplifying assumption that 
there is no sampling error and all the variation is 
due to environmental stochasticity).

With the parameterized model, Liebhold 
and Bascompte (2003) studied the probability 
of success of eradication treatments of varying 
strength. Figure 2 shows results of simulations 
plotting the probability of gypsy moth establish-
ment as a function of the pre-treatment density 

Fig. 1. Per capita growth rate as a function of popula-
tion size according to Eq. 1. Continuous line depicts a 
situation with no Allee effect (c = 0), and broken line 
corresponds to a case with an Allee effect (c = 100, 
indicated by the solid dot). In the fi rst case, there is a 
single solution n* = k (empty dot), which is stable. In 
the last case, there is an additional, unstable solution 
indicated by the solid dot. Population sizes larger than 
c have a positive per capita growth rate and will grow 
until reaching their carrying capacity k. Population sizes 
below c have a negative per capita growth rate, and so, 
will go extinct (indicated by the arrows). Other param-
eters are: g = 2, k = 1000.

Fig. 2. The simulated probabilities of gypsy moth estab-
lishment are plotted as a function of the population 
level at the time of treatment (x0), and eradication rate 
(fraction of individuals killed, c). Based on Liebhold and 
Bascompte (2003).
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and eradication mortality rate. For example, they 
showed that as long as isolated populations were 
relatively low (< 100 males captured in pherom-
one traps), eradication treatments were likely to 
succeed if able to eradicate at least 80% of the 
individuals.

Parametric thresholds

Another type of threshold is the one given by 
a critical value in some meaningful parameter 
(e.g. the ratio extinction rate to colonization rate; 
a critical amount of habitat destroyed). We will 
briefl y consider one example from metapopula-
tion and epidemiological theory. We will focus 
on simple deterministic models. An extension of 
these results, including both more realistic and 
stochastic models, can be found in Ovaskainen 
and Hanski (2003).

Consider the following general metapopula-
tion model which describes the dynamics in the 
fraction of patches occupied by the metapopu-
lation (p) as a balance between extinction and 
colonization:

                                         (4)

where c and e represent the colonization and 
extinction rates, respectively. This very simple 
model was fi rst described by Richard Levins 
(who coined the term metapopulation, Levins 

1969a). The previous model describes an ideal-
istic situation composed by an infi nite number of 
available patches. We will return to some of these 
assumptions later on. Different versions of Eq. 4 
have since then been used by many authors (e.g. 
Hanski & Gilpin 1997, Hanski 1998, 1999).

As easily seen, the long-term density of 
the metapopulation (the solution of Eq. 4) is 
p* = 1 – e/c if e < c, and p* = 0 otherwise. This 
discontinuity in the solution is due to the exist-
ence of a threshold. The metapopulation will 
exist as far as the ratio e/c > 1. The extinction 
threshold lies in the equality (Fig. 3a).

Let us assume now that a fraction D of those 
patches is permanently destroyed. D can be 
incorporated into the Levins model as a reduc-
tion in the fraction of patches available to be 
colonized (1 – p) in the following way: 

                                   (5)

One can explore how the long-term regional 
abundance (p* = 1 – D – e/c), decreases as D is 
increased. Interestingly enough, there is a critical 
value D

c
 beyond which the metapopulation goes 

extinct even when some habitat is still available 
(Fig. 3b). This extinction threshold is given by:

                             D
c
 = 1 – e/c.                        (6)

The concept of spatial extinction thresholds 
was introduced by Lande (1987) in a slightly 
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Fig. 3. Parametric extinction thresholds. Regional abundance is plotted as a function of (A) colonization rate c, and 
(B) fraction of habitat destroyed D, according to Eq. 5. Parameters are: e = 0.2, D = 0 (A); c = 1, e = 0.2 (B). 
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different version of Eq. 5 which included territo-
riality and life history. His model was applied to 
the case of the northern spotted owl (Strix occi-
dentalis caurina). 

Equation 5 is a very crude description of 
a real situation, and colonization and extinc-
tion rates may be diffi cult to estimate. But note 
that the critical amount of habitat destroyed at 
which the metapopulation goes extinct (Eq. 6), 
coincides with the fraction of habitat occupied 
when all habitat is available (solution of Eq. 4). 
This can be easily seen by looking at Fig. 3b: the 
value at which the curve crosses the two axis 
is the same. This important result, coined as 
the Levins rule (Hanski et al. 1996), is a useful 
rule of thumb. As emphasized by Nee (1994; 
see also Bascompte & Rodríguez-Trelles 1998), 
one does not need information of the relevant 
demographic processes to estimate the extinction 
threshold (we do not have to estimate parameters 
such as c and e).

The concept of extinction threshold illus-
trated by Eq. 6 is very general. Even when we 
have focused our discussion in a metapopulation 
context, models like Eq. 5 have been used in 
epidemiology, a comparison emphasized by Nee 
(1994), Lawton et al. (1994), and Bascompte and 
Rodríguez-Trelles (1998). In the epidemiological 
context, we would be describing the fraction of 
host infected by an infectious disease as a func-
tion of transmission rate (the rate at which sus-
ceptible individuals become infected after expo-
sure to infected individuals), and clearance rate 
(the rate at which infected individuals recover). 
In epidemiology, D would correspond to the 
fraction of hosts vaccinated (unavailable to be 
colonized by the disease). The threshold in this 
context has been called eradication threshold. 
One would not need to vaccinate all individuals 
for the disease to disappear, a concept fully used 
in epidemiology (Anderson & May 1991).

The possibility that extinction thresholds 
may be predicted by simple models is supported 
by theory on phase transitions. A threshold can 
be considered as a critical point separating a 
phase transition (like the transition from liquid 
to solid). Below the threshold the state would 
be persistence, and beyond it would be absence. 
Near these critical points, several properties are 
described by a few variables such as critical 

exponents which do not depend upon the details 
of the situation but only on the dimension and 
the degrees of freedom of the system considered 
(Schroeder 1991, Solé et al. 1996). The behavior 
of the system is captured by very simple rules. 
Thus, regardless of simplifying assumptions, 
models such as Eq. 5 may be good metaphors 
of more complex scenarios near the extinction 
thresholds.

Up to here, we have reviewed a simple 
model, and we have learned the existence of an 
extinction threshold despite some habitat is still 
available. We have also learned that this extinc-
tion threshold can be predicted as the long-term 
regional abundance when all habitat is available. 
That is, we do not need any demographic infor-
mation. However, one has to keep in mind that, 
as with each model, we have made a number of 
assumptions. In particular, the Levins model is 
a spatially implicit model which assumes that 
all patches are equidistant from each other. This 
means that when one individual leaves, it has 
the same probability to colonize every patch 
independently of its distance. This is a crude 
assumption for a great number of real situations 
(e.g., Hanski 1999). Also, we have focused on 
single species models. Since species are not 
isolated from each other but form food webs, it 
would be interesting to see how the extinction 
threshold depends on the complexity of such a 
web of interactions. Next, we will consider how 
the extinction threshold changes when (1) space, 
(2) the food web in which a species is embed-
ded, and (3) environmental variability acting 
on a small network of patches, are explicitly 
considered.

Extinction thresholds in spatially explicit 
landscapes

The alternative to mean fi eld-models such as the 
Levins model are spatially explicit models. In 
these models, space is considered like a lattice 
of points. Each point is determined by its specifi c 
coordinates. Dispersal can then be treated as 
a localized process. For example, an occupied 
patch has a probability to send propagules and 
colonize only one neighboring patch (for exam-
ple one of its four nearest patches). Bascompte 
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and Solé (1996) considered such a scenario and 
explored how the threshold predicted by Lande 
(1987) is affected by explicit space. In particular, 
we are interested in checking whether the Levins 
rule is affected or not by such an additional level 
of reality.

As shown by Bascompte and Solé (1996), the 
regional occupancy of the metapopulation for the 
spatially explicit situation was lower than that 
predicted by the equivalent mean-fi eld model. 
The extinction threshold took place sooner, 
that is, for lower values of habitat destruction. 
Thus, predicting the extinction threshold as the 
amount of empty habitat when all habitat is pris-
tine, would lead to an overestimation. Further 
models incorporating non-random habitat loss 
have been developed by Dytham (1995), Hill 
and Caswell (1999), and With and King (1999). 
More recently, correlation in habitat destruction 
has been addressed analytically by means of 
pair-approximation techniques (Hiebeler 2000, 
Ovaskainen et al. 2002) and the concept of the 
metapopulation capacity of a fragmented land-
scape (Hanski & Ovaskainen 2000, Ovaskainen 
et al. 2002, Ovaskainen & Hanski 2003). I will 
not pursue this work any further here. Instead, I 
will further consider the case of the Levins rule 
in situations with localized dispersal.

If the extinction threshold takes place for 
lower values of habitat destroyed when we depart 
from the global mixing assumption of mean-fi eld 

models, one can ask what component of explicit 
space is responsible for this and whether the 
change in the threshold can be corrected by some 
meaningful spatial variable. Spatially explicit 
models may be more accurate than their implicit 
counterparts, but this is easily explained because 
they contain many more variables (as many as 
sites). However, as noted by many authors, there 
is a trade-off between reality and simplicity. We 
need to understand what is essential and what is 
superfl uous (Levin 1992, Levin & Pacala 1998). 
Bascompte (2001) tried to bridge between spa-
tially implicit and explicit models by capturing 
spatial heterogeneities by means of a single mac-
roscopic variable c. This variable can be defi ned 
as c = p (1|1) – p(1), where p(1) is the probability 
of a site being occupied, and p(1|1) is the condi-
tional probability of a site being occupied given 
that one of its four nearest neighbors is occupied. 
p(1|1) has been called doublet density (Matsuda 
et al. 1992) or local density. Since mean-fi eld 
models assume zero-correlation or spatial homo-
geneity (and thus p(1|1) = p(1)), c describes the 
increase in local density above what we would 
observe in a homogeneous system. Spatial corre-
lation can be incorporated into the Levins model 
(Bascompte 2001) in the following way:

                        (7)

Bascompte (2001) showed that the aggregate 
measure of spatial correlation encapsulates well 
spatial heterogeneities: the behavior of Eq. 7 is 
very similar to the one exhibited by the equiva-
lent spatially explicit simulation. Figure 4 shows 
how the long-term regional abundance (and the 
extinction threshold) for Eq. 7 depends on spatial 
correlation c. The extinction threshold for Eq. 7 
can be defi ned as follows:

                      D
c
= (1 – e/c)(1 – c*),                (8)

where c* is the spatial correlation at equilibrium 
near the threshold. If we compare the previous 
expression with Eq. 6, we can easily see that 
the extinction threshold is reduced by the term 
(1 – c*). The Levins rule is still valid, but has to 
be “corrected” by the term measuring the degree 
of departure from the assumption of zero-cor-
relation. As noted, both thresholds coincide 

Fig. 4. Extinction thresholds as a function of the colo-
nization rate and the spatial correlation c according to 
Eq. 7. Broken line (c = 0) corresponds to the homoge-
neous case (Eq. 5) plotted in Fig. 3a. Other parameters 
as in Fig. 3a.
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when spatial correlation is zero. Of course, this 
is an approximation. It is only appropriate if the 
aggregate model is a good description of the spa-
tially explicit situation, but it is useful in relating 
the extinction threshold to some variable of spa-
tial correlation.

Extinction thresholds and food web 
structure

Up to here we have considered single-species 
models. Tilman and colleagues (Tilman et al. 
1994, 1997) extended previous work by Nee 
and May (1992) to consider the scenario of n 
competing species. Their model is a direct exten-
sion of the Levins model assuming a trade-off 
between competitive and dispersal abilities. They 
assumed that a superior competitor can instantly 
colonize a patch occupied by an inferior compet-
itor, excluding it from such a site. If species are 
ranked by their competition ability, we can write 
the following equation for species i:

                              (9)

As described by the the fi rst term in the pre-
vious equation, species i can colonize any non-
destroyed site which is not occupied by superior 
competitors or individuals of its own species 
(species 1 to i). The last term indicates that 
species i can be displaced by any competitively 
superior species arriving at its patch. The long- 
term abundance of species i, that is, the solution 
of Eq. 9, can be written as (Tilman et al. 1994):

                   (10)

It can be seen that the solution for the supe-
rior competitor is the same as the solution for the 
Levins model (Eq. 5), that is, p

1
* = 1 – D – e

1
/c

1
. 

In other words, as noted by Tilman et al. (1994), 
the Levins rule is again at work. The superior 
competitor goes extinct when the fraction of 
habitat destroyed equals the fraction of habitat 
occupied when all habitat was pristine.

Tilman et al. (1994) assumed that species 
abundance in a pristine habitat follows a geo-

metric series, that is p
i
 = q(1 – q)i – 1 where q is 

the abundance of the best competitor. Assum-
ing that extinction rates are the same for all 
species (e

i
 = e

j
 = e), we found that the required 

colonization rates compatible with the geometric 
series are given by c

i
 = e/(1 – q)2i – 1. Tilman et 

al. (1994) substituted this result into Eq. 10 
to obtain the extinction thresholds, that is, the 
critical values of habitat destruction at which any 
given species becomes extinct. For the ith spe-
cies, we have

                       D
ci
 = 1 – (1 – q)2i – 1.                (11)

The previous equation provides an interest-
ing result already found by Nee and May (1992): 
species go extinct from the best competitor to the 
poorest competitor as more habitat is destroyed. 
Thus, the species more affected by habitat loss 
are the competitively superior, more dominant 
species. Furthermore, Tilman et al. (1994, 1997) 
found that the time lag between habitat destruc-
tion and the consequent extinction events may 
be of the order of hundreds of generations. 
They termed this delay the “extinction debt”. 
The implication is that habitat loss may be more 
detrimental than previously thought, since some 
species, even when still present, will be doomed 
to extinction in the near future. 

The next step is to introduce trophic struc-
ture, that is, to move from one trophic level to a 
web of trophic interactions. Several authors had 
already studied prey-predator metacommunity 
models (May 1994, Bascompte & Solé 1998, 
Swihart et al. 2001, Holt 1993, 1997). If preda-
tors are specialists, these studies showed that 
the higher trophic-level species become extinct 
sooner than the lower trophic-level species. Also, 
the effect of habitat loss may now be a complex 
interaction between different trends.

One approach recently developed by Melián 
and Bascompte (2002) is to represent differ-
ent food web structures and to study how such 
structure modify the extinction threshold of the 
top predator. Melián and Bascompte (2002) 
considered four trophic web modules: simple 
food chain, omnivory, apparent competition, and 
intraguild predation. Each structure contained 
three trophic levels with three or four species. If 
we represent by r, c and p the regional abundance 
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of resource, consumer, and predator, respectively, 
we can write an extension of the Levins model 
for each trophic structure. For the simplest case, 
the simple food chain, we can write:

                      (12)

                               (13)

          (14)

where the bulk of parameters are as above. The 
new parameters y

i
 and m

i
 can be interpreted as 

follows. Colonization of a patch by the predator 
occurs independently of patch occupancy by its 
main prey. Therefore, in patches without prey, 
intermediate and top species pay an added cost 
y

i
 in terms of an increase in the rate of local 

extinction for mistakenly colonizing an inferior 
resource patch. In the case of a perfect generalist 
species, y

1
 and y

2
 would be equal to 0 (Swihart 

et al. 2001). m
i
 represents the increase in mortal-

ity due to predation. This last parameter allows 
two scenarios to be considered: donor control 
(m

i
 = 0), and top-down control (m

i
 > 0).

From this simple food chain model we can 
build more complexity and introduce the other 
food webs structures (see Melián & Bascompte 
2002 for details). For example, in omnivory, the 
predator consumes both consumer and resource; 
in apparent competition, there are two consumer 
species sharing the same predator; in intraguild 
predation, a trophic link is introduced between 
the two intermediate species (see inserts in Fig. 
5). Figure 5 shows the reduction in the number 
of species as habitat is destroyed. As noted, food 
web structure alters the response of top species 
to habitat loss. This means that extinction thresh-
olds are not only determined by life history traits, 
competitive-colonization abilities, and landscape 
properties, but also by the complexity of the food 
web. Omnivory confers the higher persistence 
to the top species, while interactions between 
the two intermediate species decrease its patch 
occupancy. Only the extinction threshold of the 
resource is constant and identical to that pre-
dicted by the Levins rule (since when all other 

species have gone extinct, we are dealing with a 
single species metapopulation model).

Critical number of patches for 
persistence

As noted above, metapopulation models assume 
an infi nite number of patches. This assumption is 
unrealistic for many patchily distributed popula-
tions which are restricted to a small number of 
patches. Previous theory will be of little applica-
tion in here because when the number of patches 
is so small, the effect of a fl uctuating environ-
ment will be extremely important. Our goal in 
this section is to derive an extinction threshold 
for metapopulations living in a small network of 
patches and submitted to environmental stochas-
ticity. Then we will be able to write this threshold 
as a function of the number of patches itself. Note 
that this is a slightly different approximation than 
the colonization-extinction stochasticity reviewed 
by Ovaskainen and Hanski in this issue.

Bascompte et al. (2002) used the concept of 
geometric mean fi tness (GMF) to derive such an 
extinction threshold. The GMF is a widely used 
concept in ecology and evolutionary biology to 
understand persistence in fl uctuating environ-
ments (Lewontin & Cohen 1969, Levins 1969b 
Gillespie 1974, Kuno 1981, Metz et al. 1983, 
Klinkhamer et al. 1983, Yoshimura & Jansen 
1996, Jansen & Yoshimura 1998). The model, 
similar to early population genetic models 
assuming a mating pool and dispersal into sepa-
rate demes (Levene 1953, Dempster 1955), and to 
models developed in relation to the evolution of 
dispersal (Kuno 1981, Metz et al. 1983), assumes 
spatial structure and geometric growth. The last 
assumption may be unrealistic for a large number 
of populations in which density-dependence oper-
ates. But the extinction threshold is independent 
of whether density-dependence operates or not. 
This, of course, would not be the case if we were 
trying to estimate long term population dynamics.

Bascompte et al.ʼs (2002) model assumes that 
juveniles (e.g. larvae) enter a common migrant 
pool and are redistributed as adults into n patches 
for reproduction. The growth rate at each patch 
is a random variable with some stationary prob-
ability-density function. This represents environ-
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mental stochasticity. Note that, as opposed to 
the patch occupancy (extinction-colonization) 
models reviewed in previous sections, we are 
now considering a metapopulation model with 
explicit local dynamics.

If N
0
 is the initial metapopulation size, and 

R
i,0

 is the growth rate of patch i at year 0, the 
metapopulation size in the next generation is 
given by:

                               (15)

where  is the arithmetic mean of growth 
rates among the n patches at year 0. Since the 

metapopulation size one generation later is 
, an expression for the metap-

opulation size after t generations can be general-
ized in the following way:

                                               (16)

If we denote the geometric mean (GM) of  
by  = , Eq. 16 can be written as:

                                               (17)

Then, the metapopulation will persist in the 
long-term (N

t
 ≥ N

0
) if (Lewontin & Cohen 1969, 
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Fig. 5. Reduction in the number of species in four models of food webs as the amount of habitat destroyed is 
increased. The inset in each fi gure depicts the type of trophic web: (a) simple food chain; (b) omnivory; (c) appar-
ent competition; (d) intraguild predation. P, C, and R stand for predator, consumer and resource, respectively, and 
represent the species which will go extinct next. Modifi ed from Melián and Bascompte (2002). Continuous line 
represents donor control, and discontinuous line represents top-down control. Note the position of the extinction 
thresholds in relation to the type of food web.
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Kuno 1981, Yoshimura & Jansen 1996, Bas-
compte et al. 2002):

                                                       (18)

The GM in Eq. 18 can be approximated by an 
expression known as variance discount approxi-
mation which is derived by means of Taylor 
expansions (Gillespie 1974, Yoshimura & Jansen 
1996). For the case of a metapopulation inhabit-
ing n patches, this can be written as (Bascompte 
et al. 2002):

                         (19)

where  and s2 are the arithmetic mean and 
variance, respectively, of R within patches, and 
cov is the spatial covariance between any pair of 
growth rates. As noted, both the variance and the 
spatial covariance in growth rates tend to reduce 
the GM, while GM increases with the number of 
patches (Fig. 6). This relationship can be under-
stood if we consider that: (1) it is the geometric 
mean and not the arithmetic mean which is rele-
vant for population growth (it is a multiplicative 
process, growth rates at different years do not 
add but multiply each other); (2) the GM is equal 
to the arithmetic mean when variance is zero and 
decreases as s2 increases (while the arithmetic 
mean is not affected); (3) the variance in this 

context is analogous to sampling error associated 
to the sampling of the spatial arithmetic mean of 
growth rates (sampling error, and so variance, 
decreases with n).

Equation 19 provides an analytical expression 
which can be used to defi ne the extinction threshold 
as a function of n. The critical number of patches at 
which the metapopulation goes extinct is:

                                         (20)

As n is reduced below this critical value n
c
, 

the metapopulation becomes extinct despite that 
there are still available patches. All the informa-
tion we need in order to measure this threshold 
are estimates of growth rates at different times 
and locations. Note that any further complexity 
in demographic parameter such as the density-
dependent term does not affect n

c
. This having 

been said, however, we have to keep in mind that 
the previous model is based on a series of assump-
tions such as global mixing in a pool and equidis-
tant redistribution. The threshold will, of course, 
be modifi ed if we depart from this set of assump-
tions. Specifi cally, both partial mixing (a fraction 
of larvae stays in its patch), and an uneven redis-
tribution among patches (patches which are bigger 
or are located closer to the pool may attract more 
individuals) tend to reduce the geometric mean fi t-
ness and so locate the meta population closer to its 
extinction threshold. However, as noted by Bas-
compte et al. (2002), the threshold is very robust 
for moderate deviations of the assumptions.

Although the previous model deals with 
environmental stochasticity, it has a determinis-
tic structure, and it provides a deterministic crite-
rion for persistence. This is different in truly sto-
chastic metapopulation models in which a time 
to extinction is predicted. Despite this difference, 
an analogous dependence on n in stochastic 
colonization-extinction models can be found 
for the metapopulation time to extinction or 
the occupancy state (see Ovaskainen & Hanski 
2003). Stochastic models explore the effect of 
a small network of patches. Stochasticity works 
even in a constant environment. In here, we have 
focused on the effect of environmental stochas-
ticity on a small network of patches.

Until here we have revolved around the very 
concept of extinction thresholds which seems to 

Fig. 6. Geometric mean fi tness GMF according to Eq. 
19 as a function of the number of patches. Dotted line 
indicates the extinction threshold. Metapopulation goes 
extinct when GMF is lower than one.  = 1.75, s2 = 3 
and spatial correlation is 0 (circles), 0.25 (squares), and 
0.5 (diamonds).
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be a very general property. However, we will turn 
in the next section to a specifi c situation in which 
such extinction thresholds disappear. We will 
come back to epidemiology, but in this case the 
viruses are not biological, but computer viruses.

Absence of eradication 
thresholds in scale-free networks

In the previous sections we have considered 
that dispersal is either a global mixing or it is 
restricted to the nearest neighbors. In both cases, 
each patch is connected to the same number of 
other patches. In epidemiology, this means that 
each infected individual has the same average 
probability of infecting a susceptible individual. 
But this may not be necessarily the case as we 
will see in this section.

Pastor-Satorras and Vespigniani (2001a) 
studied the persistence time of several compu-
ter viruses. This was found to be much larger 
than expected. It did not seem that there was 
an extinction threshold: viruses remained even 
when a large number of computers had the 
appropriate anti-virus. Note that despite the dif-
ferent nature of a computer, the system is analo-
gous to an epidemiological system. Computers 
interact among them (they are connected through 
the Internet). If a computer is “susceptible” it can 
become infected if it interacts with an infected 
computer. A number of computers are then “vac-
cinated” against such a virus. Thus, standard 
theory on epidemiology has been applied to com-
puter viruses. Theory predicts that after a criti-
cal fraction of computers have been vaccinated, 
the virus disappears. But this was not what 
Pastor-Satorras and Vespigniani (2001a) found. 
What was the reason for the discrepancy? 

As with the above models, it was assumed that 
computers are randomly connected. But Albert et 
al. (2000) had described that this is far from true. 
These authors had proven that the probability 
p(k) that a computer is connected to k other com-
puters follows a power law of the form:

                               p(k) � k–g.                        (21)

The previous distribution is called scale-free, 
because the tail of the distribution is so large 

that there is no characteristic mean (Schroeder 
1991). It is not defi ned for a particular scale. 
For example, if k is rescaled (multiplied by some 
constant a), p(ak) is still proportional to (ak)–g. 
This is not the case for the Gaussian distribu-
tion characteristic of a random process. In the 
latter, there is a well-defi ned average, the scale 
of the system. Rescaling the system would not 
maintain the proportionality, because in such a 
case, the proportionality is defi ned only at the 
appropriate scale.

The scale-free distribution in computer con-
nectivities means that, as opposed to a random 
network, the network of computer connections is 
highly heterogeneous: the bulk of computers are 
connected to a small number of other computers, 
but a few computers interact with a huge number 
of other computers. These hubs would be impos-
sible to observe in a random network (for a 
general introduction to scale-free networks see 
Barabasi 2002 and Buchanan 2002).

The question then was to see whether this 
scale-free distribution was the cause of the lack 
of eradication thresholds in computer viruses. 
Pastor-Satorras and Vespignani (2001a, 2001b) 
used a similar model to Eq. 4 but evolving in 
several types of interacting networks.

If we assume that the network is random, 
then we will have that the number of connec-
tions per node follows a Gaussian distribution. 
There is an average number of connections and 
the probability of having a node much more con-
nected or much less connected than the average 
drops very fast. We can say that connectivity has 
only small fl uctuations, that is, s

k
2 ~ , where  

and s
k
2 are the mean and variance, respectively, 

of the number of connections per node. Thus, 
we can assume that each node has the same 
number of links, k ~ , and this is equivalent to 
the homogeneity assumption of the mean-fi eld 
approximation, or of the spatially explicit simu-
lation. In particular, a mean-fi eld epidemiologi-
cal model (or the Levins model) evolving on a 
random network of patches could be written (in 
an equivalent way to Eq. 4):

                                     (22)

The only difference in relation to Eq. 4 is 
that an individual infected (or a patch occupied) 
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can not infect all other individuals, but only an 
average of other individuals with which the 
infected individual interacts. Thus, we recover 
the same results as before, that is, the existence 
of an extinction threshold (Pastor-Satorras & 
Vespigniani 2001a, 2001b): if the spreading rate 
falls below a critical threshold (c

c
 = e/ ) then the 

epidemics disappear. This is equivalent to the 
threshold for Eq. 4.

Now, what happens if interactions take place 
on the scale-free network observed for real 
computers? In this case, as noted before, there is 
not a well-defi ned scale, so fl uctuations in con-
nectivity are unbounded (s

k
2 = �). This means 

that some nodes are much more connected than 
for a random case, and so we can no longer 
accept the homogeneity assumption. Following 
Pastor-Satorras and Vespignani (2001a, 2001b), 
the model for the spreading of a virus in a scale-
free network reads:

                           (23)

where now we describe the fraction of nodes 
of connectivity k infected (p

k
). The extinction 

term is the same as before, but the positive term 
defi nes the probability that a node with k links 
is healthy (1 – p

k
) and gets the infection from 

one of the nodes with which it interacts. The last 

event has a probability equal to the product of 
the infection rate c, the number of connections 
k, and the probability of a link pointing to an 
infected node �(p). The solution of the model 
(Eq. 23) is given by:

                                              (24)

Since it was assumed that �(p) is a function 
of the total density of infected nodes, and this 
density in the steady state is a function of c/e, 
then �* is also a function of c/e.

The previous equation indicates that the 
higher the node connectivity, the higher its 
probability of being infected. Pastor-Satorras 
and Vespignani (2001a, 2001b) introduced this 
relationship into the calculation of �*, that is, 
they assumed that any node is more likely to be 
connected to an infected node highly connected. 
By introducing this assumption and doing some 
algebra, Pastor-Satorras and Vespignani (2001a, 
2001b) ended up with the following expression 
for the stationary fraction of nodes infected:

                          p* ~ exp(–e/mc),                  (25)

where m is a parameter from the connectivity 
distribution and can be understood as the mini-
mum number of connections at each node. As 
noted, the extinction threshold has vanished. 
The expression for p* is continuous for all the 
range of values of c. Figure 7 represents the rela-
tionship between p* and c for the random and 
the scale-free network. The elimination of the 
eradication threshold can be understood in the 
following way. It is well-known that in regular 
or random matrices, the higher the nodeʼs con-
nectivity, the lower the eradication threshold. 
Since scale-free networks can be considered to 
have an infi nite connectivity, the threshold just 
disappears.

Although we have developed the previous 
result in relation to the threshold in the effec-
tive colonization rate c/e, we would obtain the 
same result, that is, the absence of the eradica-
tion threshold, if we would be considering an 
increasing fraction of nodes vaccinated. For real 
viruses, this has deep implications. It is well-
known that the network of sexual interactions 
can be reasonably well approximated by a scale-

Fig. 7. Absence of eradication threshold in scale-free 
networks. Regional abundance is plotted as a function 
of colonization rate. Solid line corresponds to a metap-
opulation on a scale-free network according to Eq. 25. 
As a comparison, broken line corresponds to the Levins 
model depicted in Fig. 3a, for which an extinction 
threshold occurs. Parameters are e = 0.2 and m = 0.8. 
Based on Pastor-Satorras and Vespignani (2001b).
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free network over a substantial part of the scaling 
range (Liljeros et al. 2001). This suggests that 
AIDS also lacks an extinction threshold. This is 
bad news. The good news is that research on sta-
bility of complex networks provides guidelines 
for how to best attack these systems: although 
scale-free networks are very robust to failure 
(i.e., the treatment of a random node), they are 
very sensitive to attack (the treatment of the most 
connected node) (Albert et al. 2000). This means 
that epidemiological strategies should focus on 
the hubs, that is, the patients with the largest 
number of sexual partners (Albert 2002).

Now, let us come back to metapopulations. 
From the issues considered in this section, it 
becomes clear that a key question before pre-
dicting the existence of an extinction threshold 
is to determine the shape of the connectivity dis-
tribution function among patches. If this curve 
fi ts a Gaussian distribution, with a variance in 
the number of connections per patch similar to 
the average number of connections, then the 
predictions about the existence of an extinction 
threshold developed in the fi rst part of this paper 
should be observed regardless of specifi c details 
not incorporated in the model. But if connectiv-
ity distribution has longer tails (that is, the vari-
ance in the number of connections per patch is 
much larger than the mean), then we may be in 
a situation closer to the second part of this paper 
in which the extinction threshold disappears or at 
least is reduced. 

If a network of habitat patches is highly het-
erogeneous, and colonization is a local event, 
one can envision a situation in which a patch in 
the periphery may be connected through coloni-
zation processes to only another patch, while one 
patch in the center of the network may be con-
nected to many other patches. Besides traditional 
estimates such as number of patches, distances, 
isolation, etc., one could estimate a measure of 
heterogeneity in the connectivity distribution and 
see how this could shift the extinction threshold 
or even make it disappear. It is still not clear, 
however, to what extent this result is relevant for 
metapopulations. One can easily see that a con-
nectivity distribution following a scale-free dis-
tribution is more likely in epidemiology than in 
metapopulations. Several authors have looked at 
spatially explicit realistic metapopulation models 

(see Ovaskainen & Hanski 2003), in which real 
networks of patches were modeled, and still 
found the existence of an extinction threshold 
(although of course, this may have been shifted 
in relation to the predictions of an equivalent 
mean fi eld model). Future work should iden-
tify situations (if any), in which the results by 
Pastor-Satorras and Vespignani (2001a, 2001b) 
are relevant for metapopulation dynamics.

A situation of high heterogeneity in the con-
nectivity among patches is observed in plant spe-
cies dispersed by frugivorous birds. Depending 
on the type of patch (e.g. its microhabitat), it 
will be visited by many more bird species, which 
may disperse the seeds to a much larger variety 
(e.g., type, distance) of patches. For example, 
in a study about the seed dispersal process in a 
Mediterranean scrubland, Jordano and Schupp 
(2000) found that microhabitats differed strongly 
in the proportion of seeds delivered by the main 
frugivorous, and also differed in the number and 
identity of contributing disperser species. Over-
all, the seed rain was found to be strongly non-
random (Jordano & Schupp 2000). This type of 
scenario is likely to be more relevant from the 
point of view of the theory reviewed in this sec-
tion.

Similarly, in network design one could 
modify the distribution of patches  ̓connectivities 
to reduce the extinction threshold to some toler-
able value. This could be achieved by increasing 
the number of corridors in patches already well 
connected. Although these ideas are still pre-
liminary, this is an interesting area that deserves 
further study.

Concluding remarks

In this paper I have reviewed the two types of 
deterministic extinction thresholds. First, I have 
introduced the Allee effect, which is a demo-
graphic threshold, i.e., a critical population den-
sity below which growth rate may be negative. 
The Allee effect may interact with environmental 
stochasticity to drive a population extinct. I have 
illustrated this idea in the context of strategies 
for eradication of alien species.

Second, I have considered parametric extinc-
tion thresholds, that is, thresholds for a critical 
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value of a parameter such as an effective colo-
nization rate or a minimum amount of available 
habitat. I have illustrated these ideas using very 
simple metapopulation models which can be 
used to generate “rules of thumb.” Localized 
dispersal tends to shift the extinction threshold 
towards lower values of habitat destroyed. Also, 
the extinction threshold is modifi ed by the com-
plexity of the food web in which a species is 
immersed.

Since the bulk of mean-fi eld metapopulation 
models assume an infi nite number of patches, I 
have also considered the effect that the number 
of patches has on the persistence of a small 
metapopulation in a variable environment. As 
both the magnitude and spatial correlation of 
environmental fl uctuations increase, the extinc-
tion threshold takes place for a larger number of 
patches.

All the metapopulation and epidemiological 
models showing extinction thresholds assume 
random connectivities of patches. When the 
network of interactions is not random but scale-
free, the extinction thresholds vanish. Thus, it is 
important to take into account the topology of 
the network of connectivities.
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