Clonal structure of salmon parasite *Gyrodactylus salaris* on a coevolutionary gradient on Fennoscandian salmon (*Salmo salar*)

Jussi Kuusela¹,², Riikka Holopainen¹, Maria Meinilä¹, Pasi Anttila², Perttu Koski², Marek S. Ziętara¹,³, Alexei Veselov⁴, Craig R. Primmer⁵ & Jaakko Lumme¹,*

¹) Department of Biology P.O. Box 3000, FI-90014 University of Oulu, Finland (*corresponding author's e-mail: Jaakko.Lumme@oulu.fi*)
²) Finnish Food Safety Authority Evira, Fish and Wildlife Health Research Unit, P.O. Box 517, FI-90101 Oulu, Finland
³) Gdańsk University Biological Station, Laboratory of Comparative Biochemistry, PL-80-680 Gdańsk-Sobieszewo, Poland
⁴) Institute of Biology, Karelian Research Centre, RAS Petrozavodsk, Pushkinskaya 11, 185610 Petrozavodsk, Russia
⁵) Department of Biology, FI-20014 University of Turku, Finland

The population structure of the Baltic salmon (*Salmo salar*) specific clade of *Gyrodactylus salaris* was studied using mitochondrial and nuclear DNA markers across a gradient of historical coadaptation. In the Onega and Ladoga lakes, the salmon was near to eliminating the parasite: just 5 of 548 inspected salmon juveniles carried a small number of parasites. In the northern Baltic Tornio River, *G. salaris* was observed as non-pathogenic in 23% of 765 fish. The population of naïve anadromous salmon in the Keret’ River (White Sea) had almost perished after the parasite was imported from Lake Onega in 1992. The parasite clones defined by mtDNA were strongly spatially structured (*Fₚₛ = 0.548 in Keret’; Fₛₚ = 0.484 in Tornio*), suggesting competitive interactions via host defense. The prevalence and clonal structuring of *G. salaris* were concordant with the host resistance predicted from the suggested 132,000 years of common phylogeographic history in the Baltic refugia.

Introduction

Parasites and hosts experience an asymmetric tug-of-war evolution. The final outcome depends on the structure and demography of the species in question. The species pair Atlantic salmon (*Salmo salar*) and its specific monogenean ectoparasite *Gyrodactylus salaris* form an interesting evolutionary setting. Some extant salmon populations, on the Atlantic coast in Norway and in Russian Karelia on the White Sea, have been driven to the brink of extinction after introduc-
tions of the parasite, while the Baltic populations are tolerant and serve as permanent reservoirs of the parasite (Bakke et al. 2002). In tolerant salmon populations, the host–parasite communities have already reached an equilibrium, while in the susceptible populations the coevolution begins when they are first time inoculated with the parasite. The first steps of “coevolution” are expressed as an extremely high juvenile mortality of the host, to the extent of even threatening the survival of the parasite (Johnsen & Jensen 1991).

European salmon populations differ widely with respect to their resistance against or tolerance of G. salaris in laboratory experiments (reviewed in Bakke et al. 2002, 2004, 2007). Also, one North American stock (Bristol Cove) has been tested, but unfortunately, also the control fish died due to “social stress” during the experiment (Dalggaard et al. 2004). These differences have been explained by the differing periods that host and parasites have been in contact in different populations, however, until recently this hypothesis has been difficult to test.

Kuusela et al. (2007) provided evidence that the salmon-specific monophyletic mitochondrial clade of G. salaris (Meinilä et al. 2004) infecting Baltic salmon originated as a hybrid between two lineages of grayling parasites. A possible time for the hybridization event was during the Eemian interglacial, when the White Sea and Baltic Sea basins were briefly connected about 132 000 years ago (Funder et al. 2002). This connection was north of the present Lake Onega. Later, the area was covered by continental ice cap pushing aquatic fauna eastwards to the ice-dammed freshwater lakes (e.g., Kvasov 1979, Mangerud et al. 2001) which were large and permanent enough to maintain the refugial salmon populations from the brackish water pre-Eemian Baltic Sea. The palaeogeographic history of Baltic salmon populations has been elucidated recently. Instead of being of postglacial Atlantic origin, the Baltic salmon was shown to have been largely descendant from the freshwater refugia, most probably situated eastwards and/or southeast from the continental ice cap (Nilsson et al. 2001, Asplund et al. 2004, Tonteri et al. 2005).

When superimposed, the phylogeographic patterns of colonization of host and parasite allow the testing of the hypothesis that resistance differences are related to the time of coadaptation in the different populations. The easternmost freshwater salmon populations in Lake Onega and Lake Ladoga have the longest common history with the parasite. Lake Onega drains into the Baltic Basin, being the first lake to form after the recession of the ice some 11 000 years ago (Glückert 1995). Lake Ladoga was originally a gulf of the Baltic Ice lake, and was isolated from the southern Baltic (Gulf of Finland) by the end of the Ancylus lake phase, only about 8000 years ago (Saarnisto 1970, Björck 1995). The salmon stocks of the lakes Onega and Ladoga, and in the southern Baltic descend from the population which survived the glaciation in an eastern freshwater refugium (Koljonen et al. 1999, Nilsson et al. 2001, Asplund et al. 2004, Säisä et al. 2005, Tonteri et al. 2005, 2007).

The salmon populations in the northern part of the Baltic Sea are genetically different from those in the southern Baltic and large Russian lakes: they are also more variable (Nilsson et al. 2001, Asplund et al. 2004, Tonteri et al. 2005). According to Koljonen et al. (1999) and Säisä et al. (2005), the northern Baltic salmon populations have a clear Atlantic genetic component. The immigration and gene flow into the Baltic from the Atlantic salmon populations was not possible prior to the latest 10 000 years. It is to be expected that all the Baltic salmon populations were naturally challenged by G. salaris all this time.

Anadromous salmon populations found on the Atlantic coast of Norway have no genetic component from the freshwater glacial refugia, but rather descended from the continuum of seaward migrating populations along the French, Spanish and Portuguese coasts (Verspoor et al. 1999). In the White Sea, an origin from a northeastern refugia has been suggested, but also a mixture from the Atlantic populations is evident in the anadromous populations (Kazakov & Titov 1991, Asplund et al. 2004, Tonteri et al. 2005). The White Sea basin was free of salmon-specific G. salaris until 1992 (Kudersky et al. 2003). The high level of susceptibility of White Sea salmon to G. salaris was illustrated in the Keret’ River where the parasite was introduced, probably in 1992, resulting in a 98% loss of juvenile produc-

Thus, there is a palaeohistorical temporal gradient of co-occurrence of salmon and the salmon-specific strains of the G. salaris parasite: a maximum of 132 000 years in the refugial population colonizing Lake Onega and Lake Ladoga, perhaps only 10 000 years in the northern Baltic Sea, and no coadaptation at all in the anadromous populations on the White Sea. In this study, we analyze the population structure of the parasite G. salaris on the wild populations of the nominal host, S. salar, in these different, and predictably resistant versus susceptible populations.

Material and methods

Description of the salmon populations

Salmon populations from three different areas were studied (Fig. 1). The freshwater-migrating salmon populations in the lakes Onega and Ladoga, in Russian Karelia, were studied in six spawning rivers each during expeditions in July or August. The rivers are not very large, but they maintain fluctuating but healthy salmon stocks. Only one rapid was studied in each river.

Samples from lake Onega, clockwise from Petrozavodsk, were from the following rivers: Shuya 2004 ($N_{fish} = 11$), Lizhma 2001, 2002 and 2004 ($N_{fish} = 98$), Kumsa 2004 ($N_{fish} = 16$), Pyal’ma 2001 and 2004 ($N_{fish} = 98$), Tuba 2001 and 2004 ($N_{fish} = 77$) and Vama 2004 ($N_{fish} = 16$) (Fig. 2).

Samples from Ladoga were all collected in 2006, counterclockwise from Olonets: Vidlitsa ($N_{fish} = 44$), Tulema ($N_{fish} = 66$), Uuksunjoki ($N_{fish} = 29$), Syskynjoki ($N_{fish} = 66$), Hiitolanjoki ($N_{fish} = 44$), and Burnaya (Taipaleenjoki) ($N_{fish} = 4$). Because G. salaris was found only in one river (Syskynjoki), there is no map of Ladoga salmon rivers.

Samples from Tornionjoki and its tributaries Muonionjoki, Läätäseno and Köökkämäeno (from here on collectively: Tornio; Fig. 3) were collected in 2000. Altogether, 765 fish were caught in 23 rapids along 468 km of the river (Anttila et al. 2008). The additional samples from 2006 were from four rapids (Table 1).
The Keret’ parasite samples were from three rapids in 2002: Morskoy, at the rivermouth (N_fish = 20); Sukhoy rapid, located 55 km from the sea (N_fish = 8); Verkhniy (Upper) rapid, 68 km from the sea (N_fish = 23). Two rapids were inspected in 2005: Morskoy (N_fish = 21) and Sukhoy (N_fish = 1). The location of the rapids is displayed in the map (Fig. 4).

Collection of Gyrodactylus parasites

After electrofishing, the salmon juveniles were killed, measured and stored for further examinations. For standardized parasite density estimates in the Keret’ samples from 2002, and in all samples from Tornio, the dorsal fin and both pectoral fins were cut and transferred to the laboratory in 96% ethanol. The sensitivity of the method of examining only the three fins has been approximately 60% as compared with the examination of whole fish (Jensen & Johnsen 1992, Mo 1992). Thus, the Tornio data underestimate the prevalence.

At other sampling locations (Onega, Ladoga and Keret’ 2006), whole fish were immediately preserved in the field in 96% ethanol. Every mm² of skin and fins was then inspected in the laboratory. Also, the ethanol in the vials or bottles was inspected, but Gyrodactylus seldom drops from the skin due to ethanol shock. Parasites were counted under a preparation microscope and individual worms were collected for the DNA analysis.

During the study, accidental *Gyrodactylus* parasites, i.e., those not specific for salmon, were also identified, analyzed by molecular markers, and reported in another paper (Ziętara et al. 2008).

DNA extraction and sequencing

DNA was released from single specimens of *G. salaris* by digestion in a solution consisting of 0.45% Tween, 0.45% Igepal and 60 µg ml⁻¹ proteinase K in 1 × concentrated PCR buffer. Digestion was carried out in a PCR machine.
for 25 min at 65 °C, followed by inactivation of proteinase K for 10 min at 95 °C and cooling at 4 °C. Two µl of these digestions were used as templates for PCR amplification.

In the first phase of this study, a 588 bp fragment of mitochondrial CO1 sequence was amplified by primers \textit{Keret’L1} 5’-GTTTT CGCTT CACCT GTCTGG and reverse \textit{Keret’H1} 5’-TACAC CCACC ACACG ATTGG, based on published sequences (Meinilä \textit{et al.} 2003). This fragment separates all major branches of \textit{G. salaris}, specific on grayling, salmon and rainbow trout, as well as most of salmon specific haplotypes. The observations led to the hypothesis of clonal competition, and the resolution was improved by longer mitochondrial sequences, and also by utilizing the nuclear marker ADNAM1 (Ziętara \textit{et al.} 2006, Kuusela \textit{et al.} 2007).

The full length mitochondrial CO1 and its flanking tRNA segments were amplified with either \textit{FCox6} (5-TTGGTA TCATA AGCGC ATYGG TAT-3’) and \textit{16SR} (5-CATTAT ATATCA TGATG CAAA GG-3’) primers or \textit{Trp1F} (5’-ATAATA GACGA TTTGT TTTGTT TTTCA-3’) and \textit{Thr1R} (5’-ACAGA TTACT TGATG CAAA GG-3’) primers. \textit{FCox6} primer is complementary to the 5´ end of COI, \textit{16SR} primer to the 5´ end of 16SrDNA and the other two primers to transfer RNAs flanking the COI gene.

The 20 µl PCR reaction consisted of 1 × PCR buffer, 0.2 mM dNTPs, 2 mM MgCl2, 1 µM of

| Table 1, Sampling data from the 23 rapids in the Tornionjoki and tributaries. The nuclear genotype was not determined for all specimens assigned to mtDNA types, and vice versa: ADNAM1 genotype S2 was determined in an additional 21 specimens from Lätäseno (Mukkakoski and Kinnerpuska) without knowing the mtDNA type. |
|-----------------|-----------------|-----------------|-----------------|
| River | Rapid and year | Distance from sea (km) | \(N_{\text{fish}} \) | \(N_{\text{infected}} \) | Number of parasites |
| | | | | | \(N \) | \(S2 \) | \(S3 \) | \(N \) | \(S2 \) | \(S6 \) | \(S7 \) |
| Lätäseno | Pinniskoski 2000 | 468 | 15 | 9 | 11 | 3 | 7 | 7 |
| | Mukkakoski 2000 | 464 | 44 | 31 | 60 | 7 | 18 | 15 |
| | Kinnerpuska 2000 | 461 | 36 | 22 | 30 | 8 | 5 | 3 |
| | Patoniva 2000 | 459 | 15 | 8 | 14 | 2 |
| | Patoniva 2006 | 60 | 46 | | 32 | 30 | 2 | 2 |
| | Vähäkurkkio 2000 | 438 | 32 | 13 | 11 | 2 |
| Könkämäen | Pätikkä 2000 | 459 | 15 | 1 | |
| | Kelottiluspa 2000 | 435 | 15 | 0 | |
| | Kattilakoski 2000 | 431 | 55 | 28 | 11 |
| | Kattilakoski 2006 | 62 | 10 | | 8 | 8 |
| Muonio | Jatuni 2000 | 397 | 18 | 3 | 8 |
| | Pingisniva 2000 | 364 | 43 | 14 | 16 |
| | Noijanpolka 2000 | 330 | 60 | 30 | 31 | 10 |
| | Vanha Kihlanki 2000 | 255 | 33 | 2 |
| | Vanha Kihlanki 2006 | 60 | 3 | | 1 | 1 | 1 |
| | Mukkakoski 2000 | 235 | 46 | 3 | 4 | 2 | 6 | 6 |
| Tornionjoki | Kassa 2000 | 170 | 52 | 7 | 11 | 8 |
| | Jarhoineen 2006 | 153 | 60 | 0 |
| | Korpikoski 2000 | 118 | 27 | 0 |
| | Turtola 2000 | 109 | 31 | 1 |
| | Kattilakoski 2000 | 94 | 44 | 6 | | 10 | 6 |
| | Vuennonkoski 2000 | 47 | 73 | 0 |
| | Kukkolankoski 2000 | 18 | 35 | 0 |
| | Vähänärä 2000 | 14 | 7 | 0 |
| | Oravaisensaari 2000 | 13 | 46 | 0 |
| | Kiviranta 2000 | 4 | 6 | 0 |
| | Salmikoski 2000 | 0 | 17 | 1 |
| Total | | | | | 1007 | 238 | 237 | 73 | 2 | 64 | 28 | 20 | 4 |
each primer, 0.5 U of polymerase and 2 µl of the template prepared as described above. The PCR program was run as follows: 94 °C for 3 min, 38 cycles (94 °C for 30 s, 48 °C for 1 min and 72 °C for 1 min 50 sec), 72 °C for 7 min, and final cooling to 4 °C. Three additional internal primers were used to obtain the sequences: RCox4 (5´-AGACA GGTGA AGCGA AAACA-3´), LA (5´-TAATC GGCGG GTTCG GTAA-3´) and FCox3 (5´-GCCAA TAACC CAATC GTGTG-3´). The pair FCox6/16SR was used for 29 G. salaris specimens from Tornio, 2 specimens from Kumsa, 2 specimens from Lizhma, 2 specimens from Syskynjoki and 33 specimens from Keret’. Trp1F/Thr1R primers were used for 41 specimens from Tornio, 1 specimen from Lizhma, 1 specimen from Kumsa, 1 specimen from Syskynjoki and 2 specimens from Keret’, for describing the haplotypes as completely as possible.

In this procedure, the sequencing errors were eliminated by consistently using direct sequencing, thus avoiding the PCR errors disturbing the cloning approach; and by repeating the sequencing several times from same specimens, using different primers. Final quality check was conducted during a most conservative comparison of aligned sequences: every variant has been observed in numerous independent specimens.

A nuclear single copy DNA marker (Anonymouse DNA marker 1, ADNAM1) was developed and used here as described in Ziętara et al. (2006) and Kuusela et al. (2007). ADNAM1 is a segment of obviously noncoding, but not repetitive DNA (CG content 33.9%, no BLAST hits longer than 15 bp), showing five identified alleles in the material of this study. ADNAM1 was amplified with primers InsF (5´-GATCT GCAAT TCATC CTAAT-3´) and the reverse InsR (5´-TACAA TTCGA CCAAG GGTAG-3´). The 20 µl reactions consisted of 1 ¥ PCR buffer, 0.2 mM dNTPs, 2 mM MgCl2, 1 µM of each primer, 1 U of Taq polymerase and 2 µl of template prepared as above. The PCR program was run as follows: 94 °C for 3 min, 42 cycles (94 °C for 40 s, 50 °C for 30 s and 72 °C for 1 min), 72 °C for 7 min, and cooling to 4 °C. One additional Ins1R primer (5´-TTATT GACAT AGCAG CGTAT-3´) was used for sequencing. Altogether 155 specimens of G. salaris were sequenced from Tornio, 35 specimens from Keret’, 2 specimens from Kumsa and 2 specimens from Lizhma. For ascertaining the haplotypes, a subsample from Keret’ (one specimen, 6 colonies) and Tornio (4 specimens, 39 colonies) was cloned and sequenced.

Sequencing was based on Big Dye Terminator Cycle Sequencing kit protocol and the ABI 377 (PE Applied Biosystems) or ABI 3730 DNA Analyzer. (Applied Biosystems, Hitachi, Japan).

Data analyses

The sequences were aligned and inspected using MEGA3.1 (Kumar et al. 2004). In the data analysis, haplotype (clonal) diversity was calculated as $H = (n/(n – 1)) \times (1 – \sum p^2)$. Conventional $F_{ST} = (H_T – H_S)/H_T$ statistics based on haplotype frequencies were used to estimate the degree of population differentiation. The software Arlequin 2.000 was used for calculations (Schneider et al. 2000). For demonstrative purposes, the F_{ST} was transformed to the number of (female) migrants per generation (Hudson et al. 1992) $N_m = 0.5(1/F_{ST} – 1)$.

For testing the apparent negative interference (competition) between the parasite (mitochondrial) clones, a permutation test program was written to estimate the expected number of fish with mixed infection and the probability of randomly obtaining the observed number, or less. The calculation was based on repeated random sampling from a virtual population having the observed haplotype frequencies, using the same distribution of sample size per fish as in the actual data.

Results

Long mtDNA sequences, including the complete 1503 bp of cytochrome oxidase subunit 1 and the transfer RNAs for tryptophan and threonine, of all haplotypes observed in this study are deposited in GenBank (AF540891 and AF540892 Keret’; AY840222 Onega/Lizhma; AY840223 Onega/Kumsa; EF117889 Ladoga/syskynjoki; AF540905, DQ468128 and EU304825 Tornio). The alleles (haplotypes) of ADNAM1 recorded in this study are deposited in GenBank with acces-
sion numbers DQ468129-DQ468136 (Kuusela et al. 2007).

After 130 000 years of coevolution: Lake Onega and Lake Ladoga

Among the fish sampled from six Lake Onega spawning rivers (Fig. 2) during three separate visits (2001, 2002, 2004), the *G. salaris* infection was very rare. The total number of the inspected salmon parr was 293, of which three fish were infected (prevalence 1.0%). Also, the intensity (number of parasites per fish) was very low. In the Lizhma River, a single *Gyrodactylus* specimen was detected in the year 2002 ($N_{\text{fish}}=15$); in the year 2004, twelve parasites were found on a single infected fish ($N_{\text{fish}}=24$). In the Kumsa River, ten parasites were found on one fish in 2004 ($N_{\text{fish}}=50$). All the parasites were observed on second-year juveniles (1+), and the first-year fish were clean.

In the Lizhma River, the mtDNA haplotype *SalBa03* (AY840222) was almost identical to the *SalBa02* found in Keret’ (AF540892), differing from it by two T/C transitions along 1606 bp. The haplotype in the Kumsa River *SalBa01* (AF840223) was identical to the second haplotype from Keret’ (AF540891).

Both widely divergent mitochondrial clones in Lake Onega had the heterozygous nuclear *ADNAM1* phenotype S1, TMRTCRWAT, consisting of alleles TCATCGTAT (DQ468136) and TAGTCAAAT (DQ468135). This nuclear genotype was also identical in all parasites in the Keret’ River and in the two in Lake Ladoga basin.

The mitochondrially dimorphic population of *G. salaris* in Lake Onega rivers was subdivided into the extreme: two clones existed but were completely isolated, and four possible spawning rivers (Fig. 2) were free of parasites during the sampling: Shuya ($N_{\text{fish}}=11$), Pyal’ma ($N_{\text{fish}}=98$), Tuba ($N_{\text{fish}}=77$) and Vama ($N_{\text{fish}}=16$).

Six spawning rivers ($N_{\text{fish}}=255$) were inspected along Lake Ladoga in July 2006. Two specimens of *G. salaris* were observed on 2 of 68 fish from the Syskynjoki population. The two parasites in Syskynjoki carried the nuclear *ADNAM1* genotype S1, identical to the parasites in Lake Onega. The mitochondrial haplotype *SalBa11* was unique, but belonged to the clade specific to the Baltic salmon (EF117889). Other samples were completely free of parasites: Vidlitsa ($N_{\text{fish}}=44$), Tulema ($N_{\text{fish}}=66$), Uuksunjoki ($N_{\text{fish}}=29$), Hiitolanjoki ($N_{\text{fish}}=44$), and Burnaya (Taipaleenjoki) ($N_{\text{fish}}=4$).

Postglacial coevolution: the Tornio River system

The 765 fish caught in 2000 in the Tornio River and its tributaries carried a total of 5089 *Gyrodactylus* worms, counted on the pectoral and dorsal fins only. The parasite was observed in 16 of 23 rapids. The prevalence (proportion of infected fish) was 23.4%, and the incidence (mean number of parasites) on the three fins of infected fish was 28.4 (median = 8, range = 1–643). The prevalence (and intensity) of the infection was clearly higher in upstream rapids (Fig. 4). A detailed description of the epidemiology and analysis of the environmental factors influencing *G. salaris* in the river was given by Anttila et al. (2008).

Only two *G. salaris* mitochondrial haplotypes, *SalBa04* (76.9%) and *SalBa05* (23.1%), were detected in the Tornio River system ($N = 255$; Fig. 3). *SalBa04* and *SalBa05* differed by ten nucleotides along 1606 bp (accession numbers AF540905 and DQ468128, respectively). In only four of 13 rapids examined by sequencing the mtDNA of parasites, both mitochondrial clones were present simultaneously. The distribution of mitochondrial haplotypes is illustrated in Fig. 3, and the nuclear data (*ADNAM1* genotypes) are presented in Table 1. In the three uppermost rapids in Lätäseno (468–461 km), *SalBa04* ($N = 101$) and *SalBa05* ($N = 28$) haplotypes were observed together. In these rapids, both mtDNA haplotypes had the same nuclear genotype S2 TMRTCAWAT ($N = 69$, alleles TCATCATAT/TAGTCAAAT, accession numbers of the alleles DQ468129 and DQ468130). In the lower part of the river, in Mukkakoski (235 km), where only three fish out of 46 carried parasites, mitochondrial types *SalBa04* and *SalBa05* were also observed together, but carried different *ADNAM1* genotypes: *SalBa4* + S2.
TMRTCAWAT (in one fish, \(N = 2 \)) and SalBa05 + S6 TMRTYRWAK (in two fish, \(N = 6 \)). Both combinations were found in other rapids as well, up and downstream from Mikkakoski, respectively (Table 1).

The mitochondrial haplotype SalBa05 carried altogether three different ADNAM1 genotypes, in different rapids: in Läätäseno S2 TMRTCAWAT (\(N = 25 \), see above), in Mikkakoski (235 km), Kassa (170 km) and Kattilakoski (94 km) S6 TMRTYRWAK (\(N = 20 \), TAGTCAAT/TCATTGTAG, DQ468131/DQ468132). A unique genotype S7 TMRTYRTAK (\(N = 4 \), TAGTCATAT/TCATTGTAG, DQ468133/DQ468134) was observed on the single infected fish from the Turtola rapid (109 km). This genotype differed from S6 TMRTYRWAK by one converted nucleotide.

Overall, the \(F_{ST} \) value calculated over the mtDNA haplotype frequencies in different rapids was 0.484 (\(H_s = 0.357, N = 255, P = 0 \)). This was transformed to the number of female migrants per generation \(N_m_p = 0.533 \). The corresponding estimate comparing the river segments above and below the Tornio–Muonio River confluence \(N_m_p = 0.132 \) is even smaller.

A simultaneous infection by SalBa04 and SalBa05 was observed on only four fish in the year 2000 sample. This occurred in Mikkakoski and Kinnerpuska, where the nuclear ADNAM1 genotype in both mitochondrial haplotypes was S2 TMRTCAWAT. In a permutation test, simulated random resampling using the actual sample sizes per fish, four or fewer mixed infections were never observed in a million repeats. Considering only the four rapids where both mitochondrial haplotypes were observed, 18.1 double infections were expected, and four or fewer occurred in 2.4% of the random trials.

The rapids Patoniva (Läätäseno), Kattilakoski (Könkämäeno), Vanha Kihlanki (Muonianjoki) and Jarhoinen (Tornionjoki) were re-inspected in 2006. One new mtDNA haplotype, SalBa12 (EU304825), was found that differed from the previously determined SalBa04 by one nucleotide outside of the commonly sequenced 800 bp. Also, a new combination of nuclear alleles was found: S3 TMRTCATAT (\(N = 2 \), TCATCATAT/TAATCGAT). This combination can be explained as a recombinant between S2 and S7, and it was identical to the nuclear genotype recorded from the Vefsn River, Norway. The S3 clone in Patoniva differs in mtDNA from Vefsn (Kuusela et al. 2007).

The Keret’ River: an introduced parasite on a susceptible host

In the Keret’ River, every fish caught in the year 2002 in the Morskoy (\(N_{fish} = 20 \)), Sukhoy (\(N_{fish} = 8 \)) and Verkhniy rapids (\(N_{fish} = 23 \)) was infected. Only three fish were caught from the Varatskiy rapid, and they were parasite free. In other rapids, each inspected fish was severely infected, with the number of parasites on fins varying from about 100 to several hundred.

In the Keret’ River, the two mitochondrial haplotypes SalBa01 (43%) and SalBa02 (57%) were almost equally common, but unevenly distributed (Fig. 4). SalBa1 and SalBa2 sequences differed by 16 nucleotides on 1606 bp, and they were unique among the sequences of Gyrodactylus salaris observed in Salmo salar (Meinilä et al. 2004). Haplotype SalBa02 dominated the lower Morskoy rapid (84%, \(N_{parasites} = 68, N_{fish} = 9 \)). Haplotype SalBa01 replaced it in the upper section, in the Sukhoy rapid, located 55 km from the sea (89%, \(N_{parasites} = 19, N_{fish} = 3 \)), and in the Verkhniy rapid, 68 km from the sea (90%, \(N_{parasites} = 63, N_{fish} = 9 \)). The fixation index \(F_{ST} \) calculated over haplotype frequencies was 0.562 (unweighted) or 0.548 (mean \(H_s \) weighted by sample sizes, \(H_s = 0.494, N_{parasites} = 150 \)). The transformation to the number of migrants resulted in the value \(N_m_p = 0.412 \). The similarity of haplotype frequencies in Verkhniy and Sukhoy deflates the \(F_{ST} \), which between Verkhniy and Morskoy was \(F_{ST} = 0.703 \), transforming to \(N_m_p = 0.211 \). Thus, the parasite clones were not randomly distributed in the Keret’ River, rather they were in strong disequilibrium with respect of drift and migration.

For first time in this paper, similar mtDNA haplotypes are also reported from Lake Onega. As mentioned above, all parasites in the Keret’ River had an identical heterozygous nuclear ADNAM1 genotype S1 TMRTCRWAT, the same as in the lakes Onega and Ladoga. This prevents observing possible sexual exchange between the clones, which was evident in Tornio. However, no homozygotes were observed.
In the Keret’ River, the two mitochondrial clones existed at all sampling sites, though in different proportions. Based on the observed haplotype frequencies in the three rapids, the expected number of double infections was 12.1 on 20 fish where two or more parasites were sequenced. Eight double infections were detected. The probability of observing eight or fewer double infections in a random sample was $P_{\text{rnd} \leq \text{obs}} = 0.050$ (one million permutations).

In 2005, the Keret’ River was visited once again. In the Morskoy rapid, 21 salmon parr were inspected, and three of them were infected, each by the mtDNA clone \textit{SalBa01}, which was present as a minority clone in that rapid in 2002. The Sukhoy rapid had almost no salmon juveniles, but the single 18 cm long precocious male observed was infected by parasites belonging to the \textit{SalBa02} clone. \textit{ADNAM1} genotypes remained unchanged.

Discussion

This study is the first to examine \textit{G. salaris} genetic population structuring across a gradient host/parasite coadaptation timescale. We inspected a large number of salmon juveniles, in ecologically different circumstances, on resistant and susceptible hosts, utilizing molecular markers to reveal the population structure. To obtain a snapshot of the dynamics of the native and introduced parasite populations, it was important to screen the populations with a “frustratingly” low parasite density millimeter by millimeter. Only the relatively highly infected localities were studied by the “standard method” of three fins.

We used molecular identification of the parasite clones, allowing us to correctly place them into the phylogeographic framework of \textit{G. salaris}, and to eliminate the possibility of misidentification. Actually, the salmon juveniles caught during the Lake Ladoga expedition in 2005 carried more non-specific \textit{Gyrodactylus} parasites than \textit{G. salaris}: a few specimens of \textit{G. aphyae} and \textit{G. papernai} (parasites of Eurasian minnow \textit{Phoxinus phoxinus} and loach \textit{Noemacheilus barbatulus}, respectively) were observed, most probably as accidental visitors (Ziętara et al. 2008). In the Tornio River, a specimen of \textit{G. lotae} (parasite of burbot, \textit{Lota lota}) was similarly observed in year 2006 on a single salmon parr (EU523133).

Graying parasites, separable by mtDNA and \textit{ADNAM1}, which have been traditionally named as \textit{G. thymalli} (Žitňan 1960), were not observed on salmon in this study, while the two hosts live sympatrically in all localities studied. The parasite lineages, while historically related and sharing the same gene pool, are strictly host specific and reluctantly sexual (Kuusela et al. 2007, Anttila et al. 2008).

For checking the Hardy-Weinberg equilibrium (HWE) and linkage equilibrium in the \textit{G. salaris} populations, we utilized here an anonymous nuclear DNA marker (Ziętara et al. 2006). The \textit{a priori} expectation was that the parthenogenetic clonal episodes of reproduction may lead to deviations from HWE, especially in strongly fragmented host populations. The first qualitative conclusion was that the nuclear gene marker of salmon-specific strains of \textit{G. salaris} was diploid, variable, and permanently heterozygous in all individuals. It was not segregating in a Mendelian manner and thus, not in HW equilibrium (Kuusela et al. 2007).

Gyrodactylus salaris was rare in the historically coadapted host population

In Lake Onega, \textit{G. salaris} was assumed to be native. The White Sea and Lake Onega (representing now the Baltic Sea basin) were connected during the Eemian interglacial 132 000 years ago, and this was suggested to be the earliest possible time for the White Sea and Baltic Sea grayling parasites to hybridize (Kuusela et al. 2007). The genetic divergence between the two mtDNA haplotypes observed on Lake Onega salmon was large (1%), suggesting that the parasite population in this lake is old, surely predating the earliest postglacial recolonization of the recovering lake twelve thousand years ago (Nilsson et al. 2001, Asplund et al. 2004). Still, the nuclear genotype of all parasites was uniform in Onega, Keret’ and Ladoga. The existence of three distant mtDNA haplotypes and no intermediate forms indicates pruning of clones (= selection), by some kind of direct or indirect competition.
The fact that the two mtDNA clones have coexisted for so long may be considered as a consequence of the fugitive strategy. When a spawning river is occupied by a parasite, there is no chance for the other clones to invade. On the other hand, the fugitive strategy leads to the reduction of clones and to low clonal diversity in open populations.

Kudersky et al. (2003) reported a much higher prevalence of *G. salaris* in the rivers of Lake Onega. In Lizhma and Kumsha, infection was detected in 25% of the fish. In the Pyal’ma River, the prevalence was once observed to be 73%, while we have sampled the Pyal’ma River twice (4 August 2001, *N* = 48; 6 July 2004, *N* = 50) without seeing a single parasite on salmon (but a single one was collected on grayling, Kuusela et al. 2007). This wide fluctuation shows the high-amplitude seasonal demographic cycles of the parasite, and supports the metapopulation model of a fugitive parasite. On the other hand, in Lake Ladoga there is only one earlier report of *G. salaris* on salmon (Ergens 1983), but the observation was later corrected as it was found to originate from a fish farm, not from the wild (Kudersky et al. 2003).

It is to be pointed out that *G. salaris* has no specific aestivating or hibernating phases in the life cycle. The extremely low population densities in summer have to be understood to indicate a low effective population size, genetic bottlenecks and high risk of local extinction.

The difference of the lake salmon populations in comparison to the Tornio is that the spawning rivers are not connected by regular seasonal migrations like the rapids in a river. This may amplify extinction–recolonization cycles. The adult fish may meet during the feeding migration. The structured pattern observed in the Tornio River basin was amplified to the extreme in Lake Onega. Two parasite clones were detected, but they were in different rivers, and four of the six rivers were clean, supposedly not recolonized by the parasites after local extinction events. In Lake Ladoga, the two parasites found among 255 fish certainly were on the verge of extinction, but the unique mtDNA suggested that the clone was endemic.

Moderately coadapted host–parasite community in the northern Baltic basin

The epidemiological and ecological analysis of the Tornio *Gyrodactylus* infection was published by Anttila et al. (2008). The infection was stable in the river system over the time period of 2000–2004, and the sample from 2006 confirmed this stability. The most important fact in constructing the demographic model is to know that the down-migrating smolts were the most heavily infected cohort: 82.5% were infected, and some of them with a high intensity. Up to 566 parasites were counted on the three standard fins of an individual fish (Anttila et al. 2008).

In the Tornio drainage there were only two mitochondrial haplotypes and four clones detected by using nuclear markers. These numbers were raised by one mtDNA haplotype and one clone in 2006. Yet the population is open for parasite immigration from the whole area of the Baltic Sea, when the feeding migrations of salmon extend to the southern part of the sea. The extent of the genetic variation in *G. salaris* in the Baltic Sea basin has not been thoroughly explored, but the two closely related mitochondrial haplotypes certainly are a small fraction of the available variation (Hansen et al. 2003, Kuusela et al. 2007). Another important observation was that rainbow trout-specific clones were not observed on salmon in the Tornio system. Similarly, the mitochondrial haplotypes found on upstream grayling populations were never observed on salmon.

The field observations are in accordance with the laboratory susceptibility tests made by Bakke et al. (2004) with Baltic salmon from Indalsälven. Somewhat surprisingly, the salmon stock of Indalsälven was only moderately resistant against *G. salaris*, at least in comparison to the “standard Baltic” stock from Neva, which is from an extinct population maintained in hatcheries in Lake Ladoga and in Finland (Bakke et al. 2002, 2004). Rintamäki-Kinnunen and Valtonen (1996) interpreted northern Baltic salmon in hatcheries as resistant, because *G. salaris* infection appeared and disappeared, usually without any pathological symptoms. Only once has a disease outbreak been reported (Rintamäki 1989).
Population structure of the introduced parasite on a susceptible host

The well-known example of parasite introduction is the Norwegian epidemic of *G. salaris*, which started in the Lakselva River and spread throughout central Norway, demonstrating the enormous dispersal capacity of the parasite when unconsciously aided by man (Johnsen & Jensen 1991). The Norwegian west-coast epidemic was obviously caused by one clone, as suggested by mtDNA (Hansen et al. 2003) and also by nuclear IGS (Intergenic spacer of ribosomal DNA; Cunningham et al. 2003, Hansen et al. 2006). The rapid expansion of *G. salaris* in Norway is a reference to the high dispersal capacity of the parasite, but in our native populations, dispersal capacity looks rather weak.

The Keret’ River was our example of a susceptible host and an introduced parasite. The origin of infection was clearly from Lake Onega. The two mitochondrial haplotypes were almost identical to those observed in Lizhma and Kumsa, and not found elsewhere. The parasites most probably were brought together in the Shuya hatchery, the assumed intermediate source of the Keret’ infection (Kudersky et al. 2003). In spite of the short time between the introduction and sampling, the two clones had reached an almost vicariant structure and clearly divided the river into temporary territories. The process can be described as a random drift, but considering the migrations of the host, the drift has to be amplified by either direct or secondary clonal repulsion.

The resampling in the Keret’ River in July 2005 presented a complementary picture. The salmon parr density was very low. Only four of 22 fish were infected, each of them mildly, and the dominant mitochondrial haplotype SalBa02 in Morskoy had changed to SalBa01. SalBa02 was observed on the single precocious male caught in the Sukhoy rapid, where the other haplotype dominated in 2002. The change is not statistically significant, because only four fish were infected, but it further emphasizes the stochasticity of the demography of *G. salaris*, especially on a low host density.

The competition between clones most probably is mediated by host defense reactions (Bakke et al. 2002). The resistance of the host indicates the intrinsic ability of fish to develop a growth-restricting defense reaction against the parasite population (Buchmann & Lindenstrøm 2002). Between the rivers Tornio and Keret’, there was a significant difference in the frequency of individual fish infected simultaneously by two clones (Tornio: 4 observed, 18 expected, Keret’: 8 observed, 12 expected, \(G^2 = 5.219, P < 0.05 \)). The sign shown by the difference is correct. This suggests that the resistance vs. susceptibility difference of the coadapted and naïve hosts contributed to the structuring of the parasite clones.

Acknowledgements

Atso Romakkaniemi and Ari Haikonen with their team from the Finnish Game and Fisheries Research Institute, collected the salmon juveniles from the Tornionjoki and its tributaries. Kalevi Kuusela and Igor Shchurov participated in the 2002 expedition to the Keret’ River. Igor Bakhmet, Heikki Rynnänen, Anni Tonteri, Paula Lehtonen, Ville Aukee, Jörg Schneider and most importantly, Dimitry Stepanov helped during the expeditions around Lake Onega and Lake Ladoga. This study was supported by the Academy of Finland (#44124, and from the program ‘Russia in Flux’), by Naturpolis Kuusamo (for J.K. and R.H.), by the Emil Aaltonen Foundation and the Finnish Cultural Foundation (for M.M.) and by the Ministry of Agriculture and Forestry of Finland. The comments of two anonymous referees helped to clarify the message.

References

Bakke, T. A., Harris, P. D., Hansen, H., Cable, J. & Hansen L. P. 2004: Susceptibility of Baltic and East Atlantic salmon *Salmo salar* stocks to *Gyrodactylus salaris* (Monogenea). — *Diseses of Aquatic Organisms* 58:
171–177.

Schneider, S., Roessli, D. & Excoffier, L. 2000: Arlequin ver 2.000. A software for population genetics data analysis. — Genetics and Biometry Laboratory, University of Geneva, Switzerland. Also available at http://anthro.unige.ch/arlequin.

ANN. ZOOL. FE NNICI Vol. 46 • Clonal structure of salmon parasite Gyrodactylus salaris

salmon (Salmo salar) in the Baltic Sea area based on microsatellite DNA variation. — Canadian Journal for Fisheries and Aquatic Science 62: 1887–1904.

This article is also available in pdf format at http://www.annzool.net/