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Considering the well-known two-fold cost of males associated with sexual reproduc-
tion, the maintenance of sex despite natural selection remains an enigma for
population biologists. The prevalence of sex among eukaryotes is most commonly
explained by hypotheses associated with either the purging of deleterious mutations,
the generation of favorable gene combinations, the fixation of beneficial mutations,
or, less frequently, ecological theories dealing with the coexistence of competing
populations. Almost all these hypotheses ignore the fact that in stochastic environ-
ments, asexual populations exhibit higher rates of extinction than sexual populations
because the latter generally exploit a wider spectrum of resources than their asexual
counterparts. Here we develop a model to demonstrate, in populations where
mutations from sexual to asexual reproduction are possible, that three reproductive
phases — sexual, mixed, and asexual — naturally arise among competing sexual and
asexual lines. The particular phase observed is related to the level of stochasticity in
the environment experienced by the population complex in question (e.g. a partially
competing group of congeneric species) and is a manifestation of the tension that
exists between the reproductive superiority of asexual populations and their higher
rates of extinction. I term this explanation the demographic balance hypothesis and
suggest the endeostigmatid mites provide a suitable taxon for testing this hypothesis.

Introduction

Gene exchange among organisms may be as
ancient as life itself. The evolution and mainte-
nance of sexual reproduction in eukaryotes,
however, are enigmas for both evolutionary and

population biologists. Biologists have found it
difficult to explain how the demographic “two-
fold cost of males” is maintained under natural
selection. Specifically, how is sexual reproduc-
tion able to persist when the intrinsic reproduc-
tive rate of a sexually reproducing population is
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half that of a clonally reproducing counterpart
(e.g. see Williams 1975, Maynard Smith 1978,
Bell 1982)? At issue is not how but why sex
arose in eukaryotes (Kondrashov 1986, Charles-
worth 1993) and not how but why reversals to
asex occur and persist (Vrijenhoek 1993). Also
at issue is the conundrum that while sexual
reproduction is ubiquitous in animals, a number
of higher taxa appear to have been exclusively
asexual for many millions of years (Bell 1982,
Maynard Smith 1986). In particular, genetic
studies indicate that the bdelloid rotifers (class
Bdelloidea) have abstained from sex for 30 to 40
million years (Welch & Meselson 2000).

Dating back to Weismann (1889), many hy-
potheses have been invoked to explain the im-
portance of sexual reproduction. (For a critique
of Weismann’s original ideas see Burt (2000)).
West et al. (1999), following Kondrashov (1993),
broadly classify these hypothesis or explana-
tions into two distinct categories: environmental
and mutational. Both of these categories, though,
are analyzed in either a genetic or natural selec-
tion, but not in a demographic, context.

Mutational hypotheses argue that deleterious
mutations are more easily purged under sexual
(amphimixis) than asexual (apomixes) repro-
duction. This results in what is loosely referred
to as mutational meltdown in asexual lineages
(Lynch et al. 1993). Recent data cast doubt,
however, on the capacity of sexual reproduction
to purge the genome of deleterious mutations
(Kneightly & Eyre-Walker 2000).

Environmental hypotheses posit that either
beneficial mutations, or at least favorable com-
binations of genes, accumulate more rapidly in
amphimictically than apomictically reproducing
populations (as reviewed in Kondrashov 1993,
and West et al. 1999). Leigh Van Valen’s (1973)
“Red Queen’s hypothesis” implies that the aver-
age fitness of individuals in a population is
maintained at some characteristic fraction of
optimal fitness for the species because the popu-
lation’s adaptive fitness landscape is continu-
ously changing. This, in turn, implies that selec-
tion for new beneficial mutations and favorable
combinations of genes is continually ongoing.
The above mentioned characteristic fraction is
going to be much closer to 1 under sexual than
asexual reproduction because, as emphasized by

West et al. (1999), “Environmental models sug-
gest that sex accelerates adaptation to a chang-
ing environment by creating new gene combina-
tions … .”

Hamilton (1980), whose memory we honor
in this volume, argued in the vein of the Red
Queen that parasites and their hosts are involved
in an “evolutionary arms race” in which sex is
favored through the genetic variation it creates
coupled with the fitness of rare host genotypes
in the presence of parasites (see also Lively
1985, Ebert & Hamilton 1996, Hurst & Peck,
1996; but see Ladle et al. 1993). This and all the
other environmental and mutational hypotheses
reviewed by Kondrashov (1993) and West et al.
(1999) do not explain why taxa, such as the
bdelloid rotifers, have been asexual for many
millions of years. If sex is advantageous for
other species of rotifers, why is not advanta-
geous for the asexual bdelloids?

The answer to this question could well lie in
a currently neglected third category of explana-
tions, namely purely ecological or demographic.
From an ecological point of view, Bell (1982: p.
131) has argued that in a heterogeneous environ-
ment “… a single clone is unlikely entirely to
supplant a diverse sexual population.” This is
not an argument that is ultimately caste in the
context of natural selection but “… in terms of a
contest between a clone which has the greater
reproductive efficiency but a narrower ecologi-
cal competence and an inefficient but broadly
competent sexual population”. Bell, inspired by
a phrase in the concluding paragraph of Dar-
win’s Origin of Species, refers to this explana-
tion for the maintenance of asexual populations
as the tangled bank.

Case and Taper (1986), and more recently
Doncaster et al. (2000), used mathematical mod-
els to explore the plausibility of ecological ex-
planations. Case and Taper, for example, ana-
lyzed the dynamical properties of three consecu-
tive models at increasing levels of resolution
with respect to the genotypic structure of the
populations they represented: namely, a lumped
model (no genotypic structure), a single locus
genotype model (phenotype = genotype in this
model), and a quantitative trait model. Their
analysis revealed that sufficient ecological niche
partitioning among phenotypes allows sexual
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species to coexist and sometimes even supplant
asexual species. On the other hand, Doncaster et
al. (2000) used the very simple lumped two
species Lotka-Volterra competition model with
separate birth and death rate terms to demon-
strate “the existence of a threshold growth rate
for the sexual population, above which the inva-
sion [of the asexual population] is halted by
intraspecific competition.”

As West and Peters (2000) point out, Don-
caster et al. (2000) essentially confirm Bell’s
tangled bank hypothesis. The same is true of
Case and Taper’s analysis, although they do find
situations (regions of model parameter space) in
which a sexual population completely displaces
an asexual population and vice versa. Hence,
Case and Taper do provide a possible explana-
tion for the fact that some taxa are exclusively
sexual, while others may be mixed or exclusive-
ly asexual. Note that analyses using population
models lacking genetic or phenotypic structure,
such as the first of Taper and Case’s three
models and the Lotka-Volterra model used by
Doncaster et al., essentially reduce the analysis
to a group selectionist argument. A model that is
going to be used to address the ecological as-
pects of the sex versus asex conundrum needs to
explicitly incorporate the fact that different phe-
notypes do not exploit the exact same ecological
niche.

Williams (1975) raised the important ques-
tion (p. 155): “Does the presence or absence of
sexual reproduction in different taxa influence
biotic evolution by altering rates of extinction,
and if so, how?” Bell (1982) answers this ques-
tion by pointing out that if sexual populations
are less sensitive to loss of specific habitats than
asexual populations, because a sexual popula-
tion is likely to exploit a broader array of

habitats than an asexual population, then loss of
a single habitat is more likely to lead to extinc-
tion of an asexual than a sexual population. The
mechanism that I include in the model presented
in this paper is more general than Bell’s. I allow
habitats (represented by specific resource levels)
to vary stochastically, but not necessarily disap-
pear. This environmental stochasticity, together
with the natural demographic stochasticity of
populations (i.e. the natural sample variation
associated with birth and death processes), re-
sults in asexual populations going extinct more
often than sexual populations. Thus, it does not
require the actual destruction of habitats to cause
asexual populations to go extinct more often
than sexual ones.

From a demographic point of view, a tension
exists between the reproductive superiority of
asexual populations and the fact that they are
more likely than sexual populations to go ex-
tinct. With the aid of a model, I demonstrate
below that this tension is sufficient to explain
why we should expect asexual populations to
dominate in relatively weakly stochastic envi-
ronments, sexual populations in relatively high-
ly stochastic environments, and the coexistence
of the two in relatively moderate stochastic
environments. I use the word relative because,
in some taxons, the probability of extinction is
greatly reduced through particular adaptations,
such as the ability of bdelloid rotifer to survive
dehydration and freezing (Örstan 1998). Inter-
estingly, these three reproductive “phases” —
asexual (low stochasticity), mixed (moderate
stochasticity), and sexual (high stochasticity) —
replicate a pattern observed in the distribution of
sexual and asexual species in 27 genera of mites
that are collectively know as the endeostigmata
group (Norton et al. 1993, see Table 1). I refer

Table 1. Distribution of 79 sexual and 80 asexual species within 27 genera constituting the Endeostigmata
group of mites (Acari).
————————————————————————————————————————————————

Purely asexual species Mixed species (sexual/asexual) Purely sexual species
————————————————————————————————————————————————
Number of generaa 11 5 8
Mean number of

species per genus 6.2 2.4/6 10.5
————————————————————————————————————————————————
a Three genera each containing a single asexual species are omitted because they are necessarily pure.
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to the explanation provided by this tension be-
tween reproduction and extinction as the “demo-
graphic balance hypothesis.”

Returning to what West et al. (1999) refer to
as a pluralist explanation for the maintenance of
sex, demographic factors can always be added to
obtain a more complete explanation. The critical
question, however, is the relative importance of
various processes in any given situation and
whether, one particular process dominates in
most situations. I will not answer this question
but point out that, unlike most explanations
relating to sexual reproduction, the demographic
balance hypothesis is sufficient to explain why,
in some taxa, either sexual or asexual reproduc-
tion dominates and, in other taxa, coexistence of
the two strategies is apparent.

Model

In this section, a discrete time population model
is presented that includes sufficient structure to
explore issues relating to invasion, coexistence,
and exclusion of sexual and asexual populations
competing with different preferences and efficien-
cies for the same set of resources. This model is
unrelated to models used in any previous studies
and hence is more fully developed in the Appen-
dix. A “symmetric” version of the model con-
taining far fewer parameters than the more gen-
eral model is presented here in the text under a
number of simplifying assumptions. These as-
sumptions, rather than reducing the general ap-
plicability of the analysis, allow us to focus on
how the reproductive phase of the group of
competing populations depends on the tradeoff
between invasion (mutation) and extinction rates,
where each of these rates is represented by a
particular parameter in the model. (Note, the
parameter that will be varied for the extinction
rate is the one associated with the level of
demographic stochasticity).

Deterministic symmetric phenotype
model

Consider a sexually reproducing population that

consists of n identifiable phenotypes, each at
density xi(t), i = 1,…,n, at time t. Suppose that
each phenotype has the same heritability com-
ponent h and the ith phenotype has an asexual
analogue that when extant has density yi(t), i =
1,…,n, at time t. Within each sexual phenotype
and its asexual analogue, all individuals are
considered ecologically identical (i.e. they are
ecological homologues) in the way they com-
pete for resources. For simplicity, consider a
partition of a heterogeneous spectrum of re-
sources into n components, such that the ith

component, with density at time t denoted by
zi(t) i = 1,…,n, is preferred over all other compo-
nents by the ith ecological phenotype, whether
sexual or asexual.

At any time t, from an ecological point of
view, the population density of the combined
sexual and asexual populations is given by the
vector x + y, where x = (x1,…,xn)´ and y =
(y1,…,yn)´, and the resource density is represent-
ed by the vector z = (z1,…,zn)´. We assume that
the rate at which an individual of phenotype i is
able to ingest the resources it exploits (the
resources must be converted to the same com-
mon currency — e.g. calories) is given by some
function φi(x + y,z), i = 1,…,n.

Again, for simplicity, consider the case where
all phenotypes have the same density-independ-
ent birth rate b > 0 and a resource-ingestion-
dependent survival rate s(φi) expressed as

s
sa

Ki
i

φ
φ γ( ) =

+
ˆ

( / )1
, (1)

Here the parameter K > 0 scales the abscissa and
the parameter γ ≥ 1 determines how rapidly
survivorship declines in the neighborhood of K
(Getz 1996). The parameter a scales the ordinate
axis and is expressed in terms of K and a
maximum resource ingestion rate parameter δ >

0 in a manner that ensures s sδ( ) = ˆ. Specifically,
a = 1 + (K/δ)γ which ensures that the survival
rate s(φi) increases monotonically on [0,δ] from
its minimum value 0 to its maximum value ŝ .
More generally, all the parameters in the func-
tion s(φi) could be indexed by i, but in the
symmetric case treated here they are assumed to
be the same for all phenotypes.
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For each of the asexual phenotypes the
change in population density from one unit of
time (generation) to the next is modeled by the
equation (cf. Eq. A5 in the Appendix)

y t
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y ti
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,
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where the constant 2 accounts for the fact that
asexual females produce twice as many females
per generation as their sexual ecological ana-
logues and hence, all else being equal, their
population compounds twice as fast each gener-
ation. The equations for the densities xi(t) are
complicated by the fact that the sexual pheno-
types interbreed. Assuming that all phenotypes
are subject to the same heritability value h, and
assuming that mating is random the equation is
given by (cf. Eq. A5 in the Appendix)
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All that remains is to specify the precise form of
the resource extraction function φi(x + y,z).

In the context of a lumped population at
density x exploiting a homogeneous population
at density z, Beddington (1975) and DeAngelis
et al. (1975) proposed the extraction function

φ δ
( , )x z

z

d cx z
=

+ + ,

To keep the number of model parameters down
to a minimum in generalizing this function to
the situation considered here, assume that each
individual independent of phenotype spends a
proportion 1/n ≤ p ≤ 1 of its time exploiting its

“preferred” resource and a proportion 0 ≤ 
1

1
−
−

p

n
 ≤ 1/n

exploiting each of the remaining n – 1 “less
preferred” resources. Note, if p = 1/n, then this
latter inequality implies that each phenotype
spends the proportion 1/n exploiting each of the
remaining n – 1 resource components (this is the
complete niche overlap case). Further, then the
latter inequality implies the population does not
exploit any of the remaining n – 1 resource
components so that inter-phenotypic competi-
tion is 0 (this is the no niche overlap case) (see
Fig. 1). Additionally, assume that individuals
exploit all resources with equal inefficiency d,
except for their preferred resource, which they
exploit with inefficiency d/λ, (λ > 1 ensures

Fig. 1. A cartoon repre-
sentation of the propor-
tions of time each eco-
logical phenotype (wheth-
er sexual or asexual)
spends exploiting each of
the n different resources
components for the cas-
es p = 1/n (the propor-
tions are all the same)
and p = 0.5 (each pheno-
type spends half its time
exploiting its preferred re-
source and divides the
remaining time equally
among the remaining n –
1 resources).
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individuals are more efficient at exploiting their
preferred resource).

With the above assumptions, and using the

notation x xT i
i

n
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we can extend the above scalar from of the
extraction function φ to obtain (see Appendix
for more details)
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Baseline parameter values

Equations 2–4 constitute a deterministic model

of a sexual population with n phenotypes com-
peting with n clonal populations where each
clonal population is the ecological analogue of
one of the sexual phenotypes. Generally, we can
evaluate competition between the sexual popu-
lation and a coalition of m (1 ≤ m ≤ n) asexual
phenotypes by setting the initial conditions to xi

> 0 for at least some i, and yi > 0, i = 1,…,m and
yi = 0, i = m + 1,…,n (note, because the values of
the parameters are independent of the pheno-
type, it makes no difference which set of m – n
initial clone densities is set to 0).

Despite all the simplifying assumptions, the
model still has eight population parameters and n
resource component inputs. Noting that the pa-
rameter K is a scaling constant that can be set to 1
without loss of generality, the following parame-
ters were selected to be the baseline set for the
analysis: n = 10, h = 0.5, , K = 1, γ = 2, δ = 10, c =
10, d = 100, and zi = 3, i = 1,…,10. The remaining
parameters ensure that the model produces a
stable coexistence equilibrium between the sexu-
al and one of the asexual populations over the
whole range of the niche partition parameter p
∈[1/n = 0.1,1] (Fig. 2). Note that the model can
produce chaos, particularly as the parameter γ
increases in value (Schoombie & Getz 1998).

All numerical simulations of the model were run
on an Apple G3 PowerPC using Berkeley Madon-
na, V. 8.0.1, (http://www.berkeleymadonna.com/).
The code was checked by comparing numerical
and analytical results for some of the simpler
situations. For the more complicated situations,
equilibrium solutions were obtained by running
the model for several hundred generations until
the solution was no longer changing for the
desired number of significant digits. In the sto-
chastic simulations, described below, the ran-
dom number and normal distribution generator
functions in Berkeley Madonna were used.

Stochastic extensions

Issues of coexistence and competitive exclusion
of the sexual population and its parthenogenetic
ecological homologues are greatly affected by
the introduction of stochasticity into the model.
Two kinds of stochasticity were included in the
analysis. First, environmental stochasticity, was
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Fig. 2. The deterministic equilibrium size (units
scaled by setting K = 1) of a sexual population com-
peting with a single asexual clone for the baseline
parameter set is plotted as function of the proportion
of time p (1/n ≤ p ≤ 1 with n = 10) each phenotype
spends on its preferred resource.
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included by treating the resource components zi,
i = 1,…,10 as independent random variables. In
stochastic runs, each of the components was
drawn at each iteration of the model from a
distribution generated by averaging the values
of three uniformly distributed variables on [0,6]
(i.e. to clarify, within the same generation each
of the resource components varies stochastically
from the other resource components, and from
one generation to the next each resource compo-
nent itself varies stochastically). This procedure
results in a symmetric bell-shaped distribution
on [0,6] that is more kurtotic (about –0.36) than
a normal distribution, and has a mean of 3 and
variance of 1.

Second, demographic stochasticity was in-
cluded by multiplying the intrinsic growth rate 
by a normally distributed stochastic variable W
with mean 1 and variance σ2/xT for the sexual
population and σ2/yi for the ith asexual popula-
tion, but truncated so that all values of W less
then 0.01 and greater than 3 were respectively
set to 0.01 and 3. The implications of this choice
are that: (i) 3ŝb  is an upper bound under the
most favorable of conditions, (ii) the population
could not become negative, and (iii) the level of
stochasticity is controlled by a variance parame-
ter σ2 with actual variance inversely proportion-
al to population size (as it should be from
sampling theory).

To obtain a more intuitive interpretation of
the total level of stochasticity “perceived” by
a sexual or asexual population existing in
isolation in a particular stochastic environ-
ment, the coefficient of variation (CV) for the
sexual and asexual populations was obtained
from simulations for each population in isola-
tion from the others over a period of 2000
generations (Table 3).

For extinction studies, populations were re-
garded as extinct and set to zero when the
population size (xT for the sexual population and
yi for the ith asexual population) dropped below
the value given by the “pseudo-extinction”
threshold parameter θ. In reinvasion studies,
populations that were 0 were set each time
period to the value θ × INT(V + ε) where INT
denotes the integer part of the argument, and V
is a uniformly distributed random variable on
[0,1]. This approach implies that the random

values so obtained are less than θ with probabili-
ty 1 – ε, in which case the population size was
reset to 0. Conversely, the random values so
obtained are greater than or equal to θ with
probability ε, in which case the system equa-
tions were used to calculate the next value of the
invading population.

Simulation results

Coexistence equilibria

Numerical solutions of the deterministic Eqs. 2–
4 indicate that when niche overlap is relatively
strong (viz. p < 0.37 — see Fig. 2) a sexual
population comprising of ten phenotypes is in-
vaded and excluded by any of the ten clonal
ecological homologues. Coexistence occurs, how-
ever, when niche overlap is relatively weak, and
both populations have identical equilibrium lev-
els when p ≈ 0.49 (Fig. 2). As the degree of
niche overlap is further reduced (i.e. p > 0.49),
the sexual population becomes more dominant,
but never excludes the asexual population. When
niche overlap between ecological phenotypes is
completely eliminated (i.e. at p = 1) the sexual
and asexual equilibrium values are 70.8 and
11.2 respectively (Fig. 2). Though a sexual
population can effectively compete against a sin-
gle clonal line when niche overlap is zero,
irrespective of the degree of niche overlap (i.e.
value of p), the sexual population is always
driven to extinction by a coalition of three or
more clonal lines (Table 2).

Stochasticity and extinctions

Monte Carlo simulations were conducted for the
case p = 0.49 that corresponds, in the absence of
stochasticity, to the situation in which compet-
ing sexual and asexual populations coexist at the
same equilibrium level of approximately 33
(Fig. 2). Setting the extinction threshold param-
eter value to θ = 0.01 (i.e. approximately 0.03%
of the equilibrium level of 33), both populations
continue to coexist indefinitely for relatively
small values of the demographic stochasticity
parameter σ2 even though environmental sto-
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chasticity still produces moderate coefficients of
variation in the sexual and asexual populations
(Table 3). Virtually no extinctions occur over
1000 generations for σ2 = 2.0, but for σ2 = 3.5
the probability of survival of a clonal line for
this period of time drops to 63% and for σ2 = 5.0
to only 3% (Fig. 3), while the probability of
survival of the sexual population remains at
the100% level in all three cases.

From the deterministic equilibrium (Table 2)
and stochastic extinction (Fig. 3) results present-
ed above, it is evident that at low levels of
stochasticity coalitions of several clonal lines
drive the sexual species to extinction, while at
high levels of stochasticity coexistence of a
sexual population with one or more clones is
disrupted by the high rates of extinction of
clonal lines.

Mutations and reproductive phases

The next step in the analysis is to allow sexual
individuals to mutate into individuals that repro-
duce parthenogenetically (genetic aspects of this
type of transformation are discussed in Bell
(1982)). Such mutations are essentially equiva-
lent to analyzing the invasion of a sexual popu-

lation by one more asexual clones that are
ecological homologues of the various sexual
phenotypes. We would not expect reverse muta-
tions — that is, mutations from parthenogenetic
to sexual reproduction — to occur because, in
this case, contemporaneous mutations of parthe-
nogenetic individuals to at least one male and
one female are required. To level the playing
field in our analysis of competition between a
sexual population and a coalition of one or more
clones, we consider invasions of a coalition of
clones by a small group of sexually reproducing
individuals. This invading group may originate
from a remnant of the original sexual population
that is now allopatric to the coalition of clones
that competitively replaced it.

For simplicity, the rate at which asexual
populations are reinvaded by sexuals is set equal
to the rate at which sexuals are invaded by
asexuals, irrespective of whether the latter is due
to mutations or bona-fide invasions. The results,
such as those in Table 4, are not critically
dependent on these two rates being equal, or
even close in value. Rather, the distribution of
sexually reproducing species within taxa de-
pends on the interplay of extinction and invasion
rates, as well as competitive exclusion processes
and the degree of stochasticity in the system.

Table 2. Deterministic equilibrium population sizes when model parameters have the baseline deterministic
values n = 10, h = 0.5, ŝb = 20 , K = 1, γ = 2, δ = 10, c = 10, d = 100, p = 0.49 (i.e., π = 8.75), and zi = 3, i =
1,…,10.
————————————————————————————————————————————————
Number of clonal lines Equilibrium size Equilibrium size of each
competing with of sexual population nonzero clonal line
the sexual population
————————————————————————————————————————————————
00 57.7 N/A
01 33.0 33.2
02 31.2 11.8
03 extinction 27.4
04 extinction 22.5
05 extinction 19.2
06 extinction 16.8
07 extinction 15.0
08 extinction 13.5
09 extinction 12.3
10 extinction 11.3
————————————————————————————————————————————————
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Discussion

Equations 2–4 embody the underlying precepts
of the frozen niche variation hypothesis (Vrije-
hoek & Pfeiler 1997) and the closely related
frozen phenotypic variation hypothesis (Jokel et
al. 1997). These two hypothesis have respec-
tively been shown to be compatible with the
genetic structure of parthenogenetic populations
of mollies (Poeciliopsis spp.) and snails (Pota-
mopyrgus anitpodarum). Whether these compet-
ing sexual and clonal populations form an in-
traspecific or congeneric complex of competing
populations, depends on how long the popula-
tions have been reproductively isolated and on
our tendency to lump or split taxa. The above
two hypotheses apply only to taxa in which
parthenogenesis is able to arise from mutations
or through interspecific hybridizations. Clearly
the rates of such events are positive in taxa
where parthenogenesis is observed, but appear
to be zero in taxa, such as mammals, where both
maternal and paternal genomes are needed for
embryos to develop to term (Surani et al. 1984,
Keverne et al. 1996).

Reproductive phases

The demographic balance hypothesis posits a
“sexual phase” should occur whenever sexual to
asexual mutation rates are relatively low or
levels of stochasticity, and hence extinctions of
asexual species is relatively high compared with
sexual species (Table 4). With reducing levels
of stochasticity, the asexual populations go ex-
tinct less often (Fig. 3) and it becomes increas-
ingly likely that more than one asexual line
exists at any point in time (Fig. 4). When the
level of stochasticity has dropped far enough, a
coalition of several asexual lines overwhelms
and excludes the sexual population (Fig. 4 and
Table 4) and we have an “asexual phase” for the
taxonomic group in question. From the deter-
ministic results (Table 2), an asexual phase must
set in at some point as the level of stochasticity
diminishes down to zero. The breadth of sto-

chastic levels supporting the transition between
the sexual and asexual phases (i.e. the mixed
phase in Table 4) depends on the invasion rate ε
and on the extinction threshold θ.

Endeostigmatid mites

An example of sexual and asexual phases in
related Acari genera is seen in the endeostigma-
ta mites, which are a collection of eleven closely
related families totaling 159 species exploiting
edaphic habitats and moss mats. Almost half the
species are asexual (79 asexual and 80 sexual),
yet five of the eleven families are purely asexual
(although one of the families consists of only
one species) while one is purely sexual. Also,
within the remaining five mixed families, the
majority of the genera are either purely sexual or
asexual (Table 1). Of the twenty-four endeostig-
mata genera containing more than one species,
eight are purely sexual (10.5 species on average
per genus), eleven are purely asexual (6.2 spe-
cies on average per genus), leaving only five
mixed (2.4 sexual and 6.0 asexual species on
average per genus) (Table 1). Given the approxi-
mately equal number of sexual and asexual

Table 3. The coefficients of variation (CV) in the
size of the sexual and asexual populations is tabu-
lated here when environmental stochasticity is in-
corporated in the model and the level of demo-
graphic stochasticity in the model is given by the
tabulated value σ2 as listed below (see Methods
section for more details).
————————————————————————
Parameter σ2 Sexual CV Asexual CV
————————————————————————
0.5 0.20 0.24
2 0.24 0.25
3.5 0.28 0.26
5 0.32 0.27
10 0.36 0.331)

————————————————————————
1) This value is calculated only over the initial interval
before the population goes extinct (i.e., drops to a
level less than one thousandth of its isolation equi-
librium level) which invariably happens before 1000
generations have transpired.
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species in the group, the probability of assem-
bling at random a purely sexual group of ten
species is approximately 1/210 < 0.001 or a

purely asexual group of six species is approxi-
mately 1/26 < 0.02. Thus the probability of
getting nineteen out of twenty-four genera at
random to be purely sexual or asexual is exceed-
ingly small.

Assuming that mutations for clonal repro-
duction arise equally frequently in all sexual
species of endeostigmatid mites, the demographic
balance hypothesis posits, as an explanation for
the highly skewed distribution of purely sexual
and asexual genera in Table 4 (c.f. Table 1), that
purely asexual genera are found in environments
that are less variable than the mixed genera
which in turn are found in environments that are
less variable than the purely sexual genera.
Thus, the endeostigmatid mites provide a group
of species that could be use to test the demo-
graphic balance hypothesis. To do so would
require measuring the size of competing sym-
patric populations of the 27 species over enough
generations to obtain reliable estimates of means
and variances, and then comparing the coe-
fficients of variation for sexual versus asexual
species. Also, the coefficients of variation aver-
aged across a group of sympatric species could
also be compared with a spatially distinct group
of species that represents a different reproduc-
tive phase.

Distribution of parthenogenesis

The existence of sexual and asexual phases
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0

1

P
ro
b
a
b
ili
ty

o
f
s
u
rv
iv
a
l

asexual: s2 = 3.5

sexual: s2 = 3.5 and s2 = 5.0

asexual: s2 = 5.0

Fig. 3. Survivorship curves, obtained by averaging
the results of one thousand Monte Carlo simulations
over 5000 generations for the case of a single clonal
line competing with a sexual population (initial con-
ditions are xi(0) = 3, i = 1,…,10, y1(0) = 30, and yi(0)
= 0, i = 2,…,10), are plotted for the two increasingly
stochastic cases σ2 = 3.5 and σ2 = 5.0 (i.e. increas-
ing levels of demographic stochasticity but the same
level of stochasticity in the underlying resources.
Solid lines represent the asexual populations for the
two cases (gray is σ2 = 3.5 and black is σ2 = 5.0) and
the dotted line represents the sexual population
which in both cases never goes extinct.

Table 4. The mean number of extant clonal lines and the likelihood of the sexual population being present
(cf. Table 2) are listed for 3 separate simulations of each of the three different levels of stochasticity
tabulated here (the invasion parameter is ε = 1 × 10–4 and the extinction threshold is θ = 0.01)a. Also see Fig.
4 for some typical plots of the results.
————————————————————————————————————————————————
CV: sexual/asexual (σ2) 0.20/0.24 (0.5) 0.24/0.25 (2.0) 0.36/0.33 (10)
Phase Asexual Mixed Sexual

—————————— —————————— ——————————
Simulation run 1 2 3 1 2 3 1 2 3
————————————————————————————————————————————————
Sexualsb 0.0 0.0 0.0 0.9 0.5 0.8 1.0 1.0 1.0
Mean number of clonal lines 4.1 5.9 4.4 1.6 2.2 1.9 0.0 0.0 0.0
————————————————————————————————————————————————
a Mean values are calculated by sampling whether the sexual population exists and how many asexual
clones exist every 100 generations during generations 50 000 to 100 000 of simulations with initial conditions
xi(0) = 3, i = 1,…,10, y1(0) = 30, yi(0) = 0, i = 2,…,10.
b These entries represent the probabilities of the sexual population being present and are rounded to 1 decimal
place with standard deviations omitted for clarity. Thus the 0’s and 1’s are not necessarily exactly 0 or 1.
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implies that the distribution of clonal lines should
be clumped within genera when sexual popula-
tions are prevalent, or clumped within higher
taxa if sexual populations have been excluded
by coalitions of clonal lines for sufficiently long
periods of time on evolutionary scales. The
bdelloid rotifers represent the highest known
taxonomic level that is exclusively asexual. In
the bdelloid rotifers, however, the level of sto-
chasticity that can be tolerated before transition
to a mixed phase occurs may be greatly elevated
by the fact that these rotifers have reduced
extinction rates through adaptations that allow
their eggs to survive dry or freezing conditions
in anhydrobiotic forms and successfully rehy-
drate once the eggs are again in an aquaeous
environment (Örstan 1998).

Many examples of exclusively parthenoge-
netic families or genera exist in other taxa,
including more complex invertebrates, particu-
larly in the orders Acari (mites) and Hymenop-

tera (ants, bees, wasps, and sawflies). Haplodip-
loid genetic systems (diploid females develop
from fertilized eggs and haploid males develop
from unfertilized eggs) are common in Acari
and obligate in Hymenoptera. This fact leads
one to speculate that rates of transition from
sexual to parthenogenetic reproduction are en-
hanced by haplodiploidy because these genetic
systems permit the development of adults from
unfertilized eggs. A comprehensive analysis eval-
uating the merits of this speculation is, however,
beyond the scope of this paper.

Parthenogenesis occurs in at least 22 older
vertebrata genera (Vrijenhoek et al. 1989), in-
cluding the mollies (Vrijenhoek 1994) men-
tioned above, the salamanders Ambistoma, and
whiptail lizards, Cnemidophorus. In the verte-
brates, the origins of parthenogenesis appear to
be through interspecific hybridization (Dawley
1989, Vrijenhoek 1989) rather than direct muta-
tion. The model predicts that we should find

Fig. 4. The size of the
sexual population (top
graph) and one of the ten
asexual clones (middle
graph), as well as the
number of extant clonal
lines (bottom graph) are
plotted every 100 gener-
ations over 100 000 gen-
erations for one run of
each of the two stochas-
tic cases σ2 = 0.5 and σ2

= 2.0 (parameters: base-
line deterministic values,
invasion parameter ε = 1
× 10–4, extinction param-
eter θ = 0.01, stochasticity
of resources as described
in the Methods; initial con-
ditions: xi(0) = 3 for i =
1,…,10, y1(0) = 30 and
yi(0) = 0 for i = 2,…,10).
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parthenogenetic species whenever extinction
rates of parthenogenetic species do not over-
whelm the rates at which parthenogenetic lines
arise. The reason for the absence of parthenoge-
netic lineages in birds is not clear, but as in
mammals, which we recall requires both paren-
tal genomes for successful embryogenesis (Sura-
ni et al. 1984, Keverne et al. 1996), may be
related more to incompatibilities between par-
thenogenesis and embryogenesis than to rates at
which clonal lines go extinct. Further, males
have greater value in species where they play a
critical role in rearing young, which appears to
be more important in birds than any other class
of vertebrates.

Conclusion

We should not expect any single factor to ade-
quately explain the distribution of reproductive
systems across all the eukaryotes. Rather, many
processes and constraints at the genomic, physi-
ological, behavioral, and ecological levels are
likely to play a role. The most neglected process
in explaining the current distribution of sexual
and asexual species, however, is that asexual
species have higher extinction rates in relatively
stochastic environments. The power of this sim-
ple explanation is that it also predicts asexually
dominated taxa in relatively stable environments.
We see such domination at the genus and family
taxonomic levels in endeostigmatid mites and at
the class level in rotifers.

The ability of population models to predict
observed frequencies of asexual species in vari-
ous taxa will always be limited by the extraordi-
nary complexity of real systems. Despite this, the
analysis presented here provides for the first time
an explanation of why, under a spectrum of
conditions leading to different levels of stochas-
ticity in populations, we might expect to see
asexual, mixed, and sexual phases existing side
by side in related taxonomic groups where muta-
tions from sexual to parthenogenetic reproduction
occur. This explanation represents a testable hy-
pothesis in the case of the endeostigmatid mites,
provided coefficients of variation can be estimat-
ed for the size of populations of the 27 species of
mites constituting this taxonomic group.
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Appendix

Deterministic Model

Let x(t) ≥ 0 represent the density (numbers or biomass) of a population at time t. Assume population
growth is regulated through intraspecific competition for a limiting resource z(t) ≥ 0. If φ(x,z) is the
amount of resources that each individual is able to extract from its environment during its
reproductive life and R(φ)is the reproductive value of each individual at birth, then the model we
develop here is based on elaborating the structure of R and φ in fundamental growth equation

x(t + 1) = R(φ(x(t),z(t))x(t), (A1)

and then structuring the population into competing phenotypes, each of which may or may not
interbreed with other phenotypes.

In model A1, the units of time are generations. For a semelparous population, R(φ) = b(φ)s(φ),
where b(φ) is the per capita birth rate (average number of progeny per adult) and s(φ) is the
proportion of progeny that survive to reproduce while for an age-structured iteroparous population,
the value of R and the length of a generation can be calculated from a stationary life table, assuming
the population is at its stationary age distribution (Caswell, 2001). In the context of a homogeneous
resource z, the notions of resource-dependent and ratio-dependent extraction rates are generalized by
the Beddington-DeAngelis resource extraction function (Beddington 1975, DeAngelis et al. 1975;
also Getz 1984, 1991, 1993)

φ δ
( , )x z

z

d cx z
=

+ +
(A2)

where d > 0, c > 0, and δ > 0 respectively are extraction efficiency, interference competition, and
maximum extraction rate parameters. Other forms for this functions can and have be used (May,
1981).

For simplicity, we assume R(φ) = bs(φ), where b > 0 is constant, and for constants 0 1< <ŝ , K >
0, and γ ≥ 1,

s
sa

K
φ

φ γ( ) =
+

ˆ

( / )1
. (A3)

The constant a is expressed as a = 1 + (K/δ)γ (recall the δ is the maximum extraction rate coefficient
in function A2), which implies that the maximum survival rate is s sδ( ) = ˆ. The parameter K scales
the abscissa and the parameter γ ≥ 1 determines how rapidly survivorship declines in the
neighborhood of K (Getz 1996). Note that at φ = 0 implies s(0) = 0 implying that all individuals die
when no resources are consumed (from Eq. A2 holds whenever resources are absent, i.e., z = 0).
This formulation can be generalized in many ways to model several populations competing for a
spatially, temporally, nutritionally, and physically (in terms of how easily they are handled and
processed by the consumer) structured resource. Perhaps the most relevant way to characterize the
resources is from the perspective of the consumers competing. For example, in the context of n
competing populations, with density of population i denoted by xi, i = 1,…,n, one perspective is to
assume that we can structure the resources into n components zi, i = 1,…,n, such that species i favors
component i over all other components j ≠ i, j = 1,…,n. If we use pij to denote the proportion of time
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that individuals of type i spend exploiting resource component j, then it follows for each i = 1,…,n

that pii ≥ pij ≥ 0, j = 1,…,n and pij
j

n

=
∑ =

1

1. If we further assume that the degree to which individuals of

type k interfere with an individual of type i in exploiting resource component j is proportional to the
relative amount of time individuals of type k spend exploiting resource component j, then the
extraction function A2, in the context of an individuals of type i exploiting all resource components,
generalizes to (using the vector notation x = (x1,…,xn)´ and z = (z1,…,zn)´, where prime denotes
vector transpose)

φ δi i
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Here δI
 > 0 is the maximum resource extraction rate (we implicitly assume here that resources are

substitutable so that no resource is limiting on its own), cj > 0 is a constant that scales relative levels
of interference with respect to the particular resource component being exploited, and the constants
dij ≥ 0 are the relative efficiencies with which individuals of phenotype i are able to exploit resource
component j.

Generalizing Eq. A1 to a system of n-competing clonal populations is straightforward and takes
the form xi(t +1) = bisi(φi(x,z))xi(t). However, in the context of n interbreeding phenotypes, the model
is complicated by the fact that we need to account for the frequency of mating types and heritability
of phenotype. Let

qijk = Pr{phenotypes j and k have a progeny of type i}.

Then, if we do not distinguish between the order in which we list males and females, it follows that
qijk = qikj. Now assume panmixis (i.e. random mating) and a 1:1 sex ratio. Then females of phenotype
j, of which there are xi/2, will breed with males of phenotype k in proportion to their representation

xk/xT (where x xT k
k

n

=
=

∑
1

) to produce a total of b q
x x

xj ijk
j k

T2
 of progeny of type i, where bj is the

fecundity of females of phenotype j. Now, assuming the birth rates are independent of the amount of
resources extracted, but survival rates are not, Eq. 1 generalizes to
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where
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i= +1 ( / )δ γ (A6)

For the purposes of obtaining some insights into the how easily sexual and asexual populations are
able to invade one another in terms of a few key parameters relating to the efficiency of exploitation,
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the degree of overlap in resource utilization, and the heritability of phenotype in the sexual
population, the following reduced parameter case can be investigated. First, assume all phenotypes

have the same heritability factor represented by a parameter h ∈ [0,1] such that q h
h

niii = + −1
,

q q
h h

niji iij= = + −
2

1
 for j ≠ i and q

h

nijk = −1
 for j ≠ i and k ≠ i. (Note that these probabilities satisfy

the requirement that qijk
i

n

=
∑ =

1

1). Second, assume all phenotypes in the sexual population are

demographically identical other than the fact that each is λ > 1 times more efficient in exploiting its
preferred resource component, as well as having a preference π > 1 for its preferred resource
component. In this case, it follows that there exist a set of positive parameters c, b, s, δ, γ, a, and d
such that for i = 1,…,n, we have ci = c, bi = b, si = s, δi = δ,, γi = γ (which implies ai = a), dii = d, and

p
nii =

− +
π

π1
, while for j ≠ i, j = 1,…,n, we set dij = d/l, and p
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1
1 π
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1, as

required).
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models A5 and A6 simplify to yield Eq. 3 in the main text. Similarly, after defining z zT k
k

n

=
=

∑
1

, Eq.

A4 simplifies to yield Eq. 4.
For the case of noninterbreeding phenotypes is the parameters qijk in Eq. A5 clearly are qiii = 1, qiji

= qiij = 0 for j ≠ i and qijk = 0 for j ≠ i and k ≠ i. Once we take into account that parthenogenetic
females produce females at twice the rate of sexually reproducing females, and change the names of
the variables from xi to yi to indicate we are dealing the asexual rather than sexual phenotypes, Eq.
A5 reduces to Eq. 2 in the main text.


