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Most ecological studies with multiple independent variables use null hypothesis test-
ing with full or stepwise models, or AICc-based model selection, but these approaches
have not yet been compared using simulated data with known effect sizes. We com-
pared these using ecologically relevant sample sizes, effect sizes, predictor numbers,
collinearity and different degrees of explorative setups. Sample size and collinearity
governed parameter identification success and parameter estimation accuracy, while
the effect of the statistical modeling approach was comparatively smaller. Stepwise
regression increased false detection rate compared with full models in settings where
this error rate was overall low, but generally reduced the high detection failure rate in
small samples. When reintroducing removed predictors to the final model, stepwise
regression often improved the accuracy of point estimates relative to full models. The
performance of AICc model selection and model averaging depended on the exact
method, and did not differ overall from null hypothesis testing approaches.

Introduction We are, therefore, inclined to adopt statistical
practices that may yield a less complex (ie.,
more parsimonious) model from which conclu-

sions are subsequently drawn. Such practices can

Explorative ecological research is based on the
collection of data and on the identification of

patterns in these data. The observed patterns
can then be tested in confirmatory analyses, and
explorative analysis therefore helps in generating
new hypotheses (Johnson 2002, Guthery 2007).
Unfortunately, the sample sizes are usually rather
low while possible predictors are numerous. This
widens confidence intervals around effect size
estimates (Hocking 1976) and hampers the iden-
tification of influential predictors (Forstmeier &
Schielzeth 2011), thereby reducing generality
of the conclusions (Ginzburg & Jensen 2004).

be classified as model simplification or model
selection (Johnson & Omland 2004).

Model simplification uses metrics of pre-
dictor or model performance (most often null
hypothesis significance testing, NHST) to adjust
the model to the available data. In the case of
NHST, model simplification involves multiple
tests of the probability of obtaining the data
given multiple, increasingly simple null hypoth-
eses. Model selection, on the other hand, evalu-
ates multiple models or statistical hypotheses in
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a single step, using a model-specific metric to
estimate the plausibility of each model given the
data set. In both model simplification and model
selection, the goal can be twofold. First, identi-
fying the important predictors and discarding the
unimportant predictors, which can be vital, e.g.
for population management decisions. Second,
reliably estimating the effects of a given vari-
able, which can be important, e.g. for fine-tuning
management actions.

In ecology, there are three typical meth-
ods used to solve statistical problems involving
multiple independent variables. The first is fit-
ting all predictors simultaneously and drawing
conclusions from this saturated or full model.
The second and most widely adopted approach
is model simplification by stepwise selection
(Miller 1992). This involves a sequential removal
or reintroduction of terms, until neither the inclu-
sion nor the exclusion of any term can be justi-
fied based on a given threshold criterion (most
often p values). The third approach is informa-
tion-theoretic (IT) model selection (Johnson &
Omland 2004). IT model selection means the
calculation of information criteria (most fre-
quently the Akaike Information Criterion, AIC or
its derivatives; Burnham & Anderson 2002) for
each model in a pre-determined model set. Infor-
mation criteria allow us to trade off model fit
and parsimony in a search for the most suitable
model given the data set (Ward 2008). Recently,
IT methods were strongly advocated and NHST-
based model simplification severely criticized
(e.g. Johnson 1999, Anderson ef al. 2000, Whit-
tingham et al. 2006), but the use of IT methods
in ecology is limited and the majority of studies
continue to use NHST (Garamszegi 2011, Hegyi
& Garamszegi 2011). There is also a mixture of
model simplification and AIC, the “AIC-step-
wise” method, but this is widely rejected in the
IT literature for philosophical reasons and we do
not discuss it further (see Burnham et al. 2011).

The caveats of stepwise regression are
assumed to be well known and abundantly
demonstrated (Burnham & Anderson 2002,
Whittingham ez al. 2006, Mundry & Nunn 2009,
Forstmeier & Schielzeth 2011), although some
of these problems can be mitigated while others
can also be detected in IT methods (Hegyi &
Garamszegi 2011). As a model simplification

method, stepwise selection simplifies the model
based on parameter estimates coming from the
current data set. This is called “data dredging”
and it may simultaneously reduce the gener-
ality of the conclusions and lead to parameter
estimation bias (particularly with weak predic-
tors), overly optimistic goodness of fit estimates
and downward biased uncertainty estimates
and p values (Pope & Webster 1972, Flack &
Chang 1987, Copas & Long 1991). Stepwise
regression, particularly with many predictors,
may also increase the probability of detecting
spurious (“uninformative”) predictors and at
the same time may fail to detect informative
predictors with small effect sizes (Derksen &
Keselman 1992, Murtaugh 1998). Furthermore,
stepwise regression can be unstable in that the
composition of the final model may depend
on small changes in the data and on the details
of the removal/introduction approach (James &
McCulloch 1990, Derksen & Keselman 1992).
Finally, stepwise regression focuses on a single
final model and thereby ignores uncertainty
in the choice of the final model, ie. the fact
that other models may fit the data similarly
well (Draper 1995, Whittingham ez al. 2006). It
seems that parameter estimation problems with
stepwise regression are attenuated with increas-
ing sample size, while parameter identification
problems remain even at large sample sizes
(Austin 2008).

The performance of IT model selection
received less scrutiny, which may stem from the
fact that the detailed elaboration of the approach
is a relatively recent development (Buckland e?
al. 1997, Burnham & Anderson 2002). Monte
Carlo methods that generate data from known
underlying effects were often used to compare
AIC or its small-sample adjustment AICc (Hur-
vich & Tsai 1989) with other information criteria
such as BIC or KIC (e.g. Mills & Prasad 1992,
Kuha 2004, Kim & Cavanaugh 2005, Seghouane
20006). These studies almost uniformly noted the
tendency of AIC(c) to select relatively complex
‘best’ models, in particular when samples sizes
are low. We are aware of only two simulation
studies that compared the parameter selection
properties of AIC(c) and stepwise regression.
One of them (Burnham & Anderson 2002: 121—
124) used simulated data with a large number of
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small to medium effects, i.e. a complex underly-
ing process (“tapering effect sizes”). This study
found that both stepwise selection and AICc
underestimated the complexity of the underlying
process, but this effect was more pronounced in
AICc. Another study (Raffalovich ef al. 2008)
used a data set with a mixture of predictors with
zero and nonzero effects and was thus based
on the assumption that some of the predictors
might be truly unrelated to the response (Mundry
2011 argues that this is likely to be a rather
common situation in studies of ecology and
behavior). Furthermore, some predictors were
highly inter-correlated. Here, stepwise regres-
sion performed relatively well while AIC and
AICc performed very poorly, mostly due to their
strong tendency to select spurious predictors.

Fitting the full model, as the simplest
approach, is often not explicitly included in
simulation studies (see Austin 2008 and refer-
ences therein). The few studies we are aware of
that did so (Lovell 1983, Mundry & Nunn 2009,
Forstmeier & Schielzeth 2011) used data in
which all effects were set to zero at the popula-
tion level. They showed an increased probability
of finding significant predictors (Lovell 1983,
Forstmeier & Schielzeth 2011) or significant
models Mundry & Nunn 2009) in stepwise
regression than in the full model approach. One
major benefit proposed for stepwise regression
compared with full models is the higher proba-
bility to detect predictors with non-zero effects
(e.g. Hocking 1976, Aiken & West 1991). These
were absent from the above simulations, which
calls for further work on this topic.

Surprisingly, to the best of our knowledge,
there is no study that has tested the relative
suitability of the three methods: full models,
stepwise regression and the AIC(c)-IT approach
together using simulated variables with known
population-level effect sizes. Here, we attempt to
fill this gap by using simulated data that include
both informative predictors and uninformative
predictors (we use the term uninformative pre-
dictors for those independent variables that are
uncorrelated with the response at the population
level and informative predictors for those that
are correlated with the response). We use various
combinations of sample size, number of predic-
tors, collinearity among predictors, and the ratio

of informative predictors among all predictors
to cover some scenarios typically encountered
in ecological and evolutionary studies. We test
three different IT approaches to parameter iden-
tification, and model averaging as a method
for parameter estimation using multiple models
(Buckland et al. 1997, Richards et al. 2011).
We repeat the same analyses with the Bayesian
information criterion (BIC, Schwarz 1978). This
criterion has been found to give better results in
terms of parameter identification than AIC(c)
(Ward 2008).

In the stepwise process, parameters will drop
out from the model if they are below a certain
threshold of effect size or statistical significance
(Whittingham et al. 2006). Among significant
effects that are retained, there is an increased
chance of finding overestimated effect sizes due
to sampling variation, since these will tend to
become significant (Copas & Long 1991, Forst-
meier & Schielzeth 2011). This bias will be more
serious for predictors with weak true underlying
effect sizes at the population level (Sauerbrei
1999), which applies to most ecological predic-
tors. On the other hand, effect sizes for param-
eters that are not included in the reduced model
are regarded as zero. This follows logically
from the threshold-based philosophy of step-
wise regression (Anderson et al. 2000, Martinez-
Abrain 2007), but it certainly introduces massive
parameter estimation bias in the presence of
sampling error (Whittingham ez al. 2006, Lukacs
et al. 2010). It has recently been suggested that
the well known extreme parameter estimation
bias of stepwise regression can be mitigated by
a simple adaptation of the process for param-
eter estimation: the reintroduction of removed
terms one by one to the final model (Hegyi &
Garamszegi 2011; hereafter called the SRPE
method, standing for ‘“stepwise-reintroduction
for parameter estimation”). This gives estimates
of effect sizes for all predictors, while still cap-
italizing on the reduced uncertainty intervals
and potentially reduced bias of smaller models.
Our present study employs the SRPE method
for parameter estimation in stepwise regression
and it therefore represents the first testing of the
method.

Mainstream advocates of IT methods may
find our simulation exercise irrelevant. There is
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Fig. 1. Frequency distri-
bution of absolute (i.e.
unsigned) estimated effect
sizes from our simulations
(n=12 000) when pooling
all settings and applying
full models. White and
grey bars denote infor-
mative and uninformative
predictors, respectively.
The graph was truncated
at 0.8 for better visibility
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a philosophical difference between NHST and
IT methods (model simplification versus model
selection, see above). Due to this, some IT model
selection criteria such as AIC(c) were designed
for a situation where there are no true zero
effects but rather a “tapering” frequency distri-
bution of effect sizes. In this concept, “identi-
fication” of predictors is meaningless and the
focus is on correct parameter estimation. In
the case of AIC(c), this means the minimiza-
tion of the Kullback-Leibler distance (Burnham
& Anderson 2002). From another viewpoint,
a trade-off may be assumed between parame-
ter identification and estimation performance,
and AIC(c) is on the estimation while BIC on
the identification side (Yang 2005). We must
keep this in mind when interpreting our results.
However, comparing the approaches in the way
we do here still makes sense and must be done
because this is how AIC(c) is generally used in
ecology: as a replacement for classical parameter
identification approaches (reviewed in Hegyi &
Garamszegi 2011).

Material and methods

Simulated data sets

1600 data sets were generated, all consisting
of a dependent variable, informative predictors

and uninformative predictors. Informative and
uninformative predictors were generated so that

T = because only 9 of the
0.6 0.7 0.8  estimates fell above this
value.

their population-level bivariate correlations with
the dependent variable were 0.3 and 0.0, respec-
tively. Effect sizes in ecology are generally small
(Mgller & Jennions 2002), so we chose the lower
threshold of medium effect size (Cohen 1988)
for our informative predictors. Each data set is
a random sample from a population with the
respective known correlation value. As in any
empirical data set, sampling variation causes
sample correlations to deviate from the under-
lying population-level correlation. Indeed, when
applying fully parameterized models and pooling
informative predictors and uninformative pre-
dictors, the overall distribution of sample-level
parameter estimates (n = 12 000) was continu-
ous (though noticeably bimodal) (Fig. 1). Predic-
tor variables and response values were sampled
from normal distributions with unit variance
throughout. The data sets belonged to 16 catego-
ries defined by the following four attributes:

1. Sample size was 30 or 200 which corre-
sponded to relatively small and large ecolog-
ical samples, respectively. There are some-
times much greater ecological samples than
200, but these typically involve repeated data
points from the same entities. In a sample
of 229 published effect sizes from various
fields of ecology, evolution and physiology,
only two had an effective sample size greater
than 200 (A. P. Mgller, pers. comm.). The
sample size of 200 is also much above the
interquartile range of any behavioral study
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type reviewed by Taborsky (2010, see his
Fig. 1; also note that behavioral samples are
typically smaller than ecological samples).
On the other hand, there are great numbers
of ecological and behavioral samples smaller
than 30 data, but using models with multiple
predictors would be grossly inappropriate in
these small samples (Green 1991, Stevens
2002). Recent simulations with a similar goal
used similar or narrower sample size ranges
(n = 170 to 230 in Mundry & Nunn 2009, n
=50 and n = 200 in Forstmeier & Schielzeth
2011).

. Correlation among all predictors was uni-

formly O or 0.3, which implies no or moder-
ate collinearity. There is to our knowledge no
published information on average predictor
correlations in ecology and evolution. We
set these to a similar value as predictor—
response correlations, as we believe that the
two should be similar in magnitude if differ-
ent predictors are not redundant but represent
different causal or functional pathways. This
point clearly deserves future investigation.

. The number of predictors was 5 or 10, both

of which are realistic values for an ecological
study (Forstmeier & Schielzeth 2011).

. The proportion of informative predictors

among the complete set of predictors (here-

Table 1. The types of data sets used in our simulations.

after informative predictor ratio, IPR) was
either 0.2 or 0.6. These IPR values may be
viewed as referring to situations with low
vs. high amounts of prior information on the
study system (Johnson & Omland 2004).

The uniform interrelation of predictors is
a special case that was chosen as an example
because of its interpretational simplicity. Several
previous simulation studies used similar settings
(e.g. Burnham & Anderson 2002, Freckleton
2011) and we refer to this analysis as the “uni-
form interrelation analysis”. To confirm the gen-
erality of our findings under other within-model
correlation structures, we also conducted another
simulation exercise in which a separate array of
1600 data sets had 12 predictors, a fixed IPR of
0.5, and 2 x 3 different predictor interrelation
types within a single data set ([informative, unin-
formative] x [uncorrelated, correlated with an
informative predictor, correlated with an unin-
formative predictor]). This analysis (“varying
interrelation analysis”) was conducted with two
sample sizes, and yielded similar results as the
uniform interrelation analysis under the relevant
settings (i.e. many predictors, large IPR). There-
fore, we report only the uniform interrelation
analysis in the main body of our paper, while the
varying interrelation analysis and its interpre-

Interrelation Sample size Correlation among Number of predictors Informative
predictors predictor ratio
Uniform 30 Uniformly 0.0 5 0.2
Uniform 30 Uniformly 0.0 5 0.6
Uniform 30 Uniformly 0.0 10 0.2
Uniform 30 Uniformly 0.0 10 0.6
Uniform 30 Uniformly 0.3 5 0.2
Uniform 30 Uniformly 0.3 5 0.6
Uniform 30 Uniformly 0.3 10 0.2
Uniform 30 Uniformly 0.3 10 0.6
Uniform 200 Uniformly 0.0 5 0.2
Uniform 200 Uniformly 0.0 5 0.6
Uniform 200 Uniformly 0.0 10 0.2
Uniform 200 Uniformly 0.0 10 0.6
Uniform 200 Uniformly 0.3 5 0.2
Uniform 200 Uniformly 0.3 5 0.6
Uniform 200 Uniformly 0.3 10 0.2
Uniform 200 Uniformly 0.3 10 0.6
Varying 36 Six different types 12 0.5
Varying 240 Six different types 12 0.5
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tation can be found in Appendix 1. All types of
data sets used in our simulations are summarized
in Table 1.

Analysis of simulated data sets

In our present simulations, interaction terms were
not included because these generate extra com-
plexity and interpretational problems (Aiken &
West 1991, Engqvist 2005, Grueber et al. 2011).
Interactions and non-linear terms will have to
be examined in future simulations. All data sets
were subject to three types of analyses, focusing
on the main effects of variables. In the full model
approach, hypothesis testing and parameter esti-
mation were done in the saturated model con-
taining all independent variables. In the stepwise
approach, terms were automatically and sequen-
tially removed and then reintroduced, starting
with the full model and using removal and rein-
troduction thresholds of p = 0.05. Finally, for the
model selection approach we calculated values
of the bias-corrected AIC (AICc) and BIC for
all combinations of the independent variables.
This “all subsets” IT analysis is the most widely
used IT approach in ecological studies (Hegyi &
Garamszegi 2011, see also Whittingham er al.
2006, Lukacs et al. 2010, Symonds & Moussalli
2011). It signifies a situation where there is little
or no prior information and hence characterizes
an explorative analysis (see discussion in Eber-
hardt 2003, Hegyi & Garamszegi 2011). The
results of these modeling approaches were then
analyzed according to two different statistical
paradigms, corresponding to the two main aims
of statistical modeling: parameter identification
and parameter estimation.

The parameter identification approach seeks
to distinguish important and unimportant predic-
tors. Following this paradigm in the three anal-
ysis types, we identified as important predictors
(1) significant predictors (p < 0.05) in the full
model, and (2) significant predictors (in this case,
all predictors) in the final model of the stepwise
process. For AICc or BIC, we employed three
different methods as there is no general agree-
ment in the literature. We chose (3) predictors in
the model with the smallest AICc or BIC value
(the “AICc-best” or “BIC-best” model), and pre-

dictors of AICc or BIC weights (W) greater than
(4) 0.7 or (5) 0.9. From these five types of results,
we calculated different identification error mea-
sures for each data set and result type. False
detection probability (or Type I error rate, here-
after FPOS from “false positive”) was defined as
the number of uninformative predictors classified
as important, divided by the total number of unin-
formative predictors. Detection failure probabil-
ity (or Type II error rate, hereafter FNEG from
“false negative”) was defined as the number of
informative predictors identified as unimportant,
divided by the total number of informative pre-
dictors. Total or identification error probability
(hereafter FTOT from ‘““false total”) was a com-
posite error measure which gave the total number
of misidentified predictors divided by the total
number of predictors. FTOT is a combination of
two different measures (FPOS and FNEG), and
its value depends on the values of both constitu-
ents which are themselves negatively correlated
with each other. Therefore, as the exact meaning
of a given value of FTOT is unclear, FTOT could
be regarded as a derived quantity from a statisti-
cal viewpoint, but it is relevant for an ecologist
whose goal is to correctly assign all predictors
of interest as either important or less important.
In empirical studies, the identity of informative
and uninformative predictors is always unknown,
and the researcher may be equally interested in
retaining informative and discarding uninforma-
tive predictors. FTOT measures the combined
success of the two under the given settings. We
finally had 3 x 5 different identification error
measures for each data set, due to the five meth-
ods employed in parameter identification.

The parameter estimation approach aims at
quantifying the effect sizes for all terms and is
thus not exclusively focused on important predic-
tors. Effect size estimates are critical for quantita-
tively evaluating our findings and reporting small
(and thus non-significant) effect sizes can help
mitigate publication bias (Nakagawa & Cuthill
2007). For the full model approach, effect size
information came from the saturated model. In
the stepwise process, we used the SRPE method
that estimates effect sizes for the removed terms
by reintroducing them into the final model one
by one (Hegyi & Garamszegi 2011). Finally, for
the AICc or BIC model selection approach, we
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applied model averaging across the whole candi-
date model set (Buckland et al. 1997, Burnham &
Anderson 2002). This procedure calculates aver-
age effect sizes across the models while weight-
ing the contribution of a given effect by the
plausibility (AICc or BIC weight) of the given
model. We employed the unconditional estimator
of model averaging (section 5.3 in Burnham &
Anderson 2002) which uses information from
all models and substitutes the effect size with
zero for models without the respective parame-
ter. After acquiring the effect size estimates for
all individual parameters in each data set, we
calculated mean effect sizes for all informative
predictors and all uninformative predictors in
each data set, which yielded two values (average
effect sizes of informative and of uninformative
predictors) for each combination of data set and
modeling approach. We compared these averaged
effect size values in the following.

Full model fitting and automatic stepwise
analyses were conducted using the GLZ proce-
dure and the SCL programming environment of
Statistica 5.5 (StatSoft, Inc). Reintroductions for
effect size estimation in the stepwise process,
and all analyses involving AICc or BIC, were
calculated in the REG procedure of SAS 9.1
(SAS Institute, Inc). AICc was post-hoc calcu-
lated in SAS from AIC output values given by
the REG procedure. The different programs were
using the same data sets, and their results for a
given data set and procedure were the same. The
reason for using multiple programs in the same
simulation is purely practical (differences in data
handling, programming and output options) and
subjective. The findings were evaluated quali-
tatively, focusing on the magnitudes of identi-
fication errors and parameter estimation bias.
Significance tests of the differences would be
largely meaningless because quantitatively iden-
tical errors or estimates for any two methods are
highly unlikely, and any small difference would
become significant above a given sample size.

Results
Parameter identification

Mean identification errors for all combinations

of our system settings are visualized in Appen-
dix 2. Here we concentrate on major effects
and interactions. The number of predictors had
very small effects on parameter identification
errors so it is neither plotted nor discussed here.
When pooling the three methods (full model,
stepwise and AICc-IT), sample size, predictor
interrelation and IPR exerted a strong interac-
tive effect on FPOS (Fig. 2). False detections
always became more frequent when predictors
were correlated, but there was an extreme at
large samples and high IPR where mean FPOS
was approximately 80% (Fig. 2A bottom right).
FNEG, on the other hand, was low at large
sample sizes regardless of other settings (Fig. 2B
right-hand side), and it was overall highest with
small samples, correlated predictors and high
IPR (Fig. 2B bottom left). As a combined error
measure, FTOT showed effects that were domi-
nated by the dominant predictor type in the given
setting (informative at high IPR and uninfor-
mative at low IPR). FTOT was low with large
samples and uncorrelated predictors, while in
other settings it was always higher at high than
at low IPR.

The effects of model type (NHST and
AICc-IT methods) on identification errors were
largely independent of other system settings, with
the exception that FNEG was uniformly low in
large samples (see Appendix 2). Therefore, the
model type effect is plotted separately (Fig. 3).
With respect to FPOS (Fig. 3A and D), W, > 0.7
gave consistently similar error rates to stepwise
regression. Full model and stepwise also differed
relatively little in FPOS, with a small overall
advantage of full models in this error type. AICc-
best always gave the highest FPOS while W, >
0.9 the lowest. Where FNEG was present (small
samples), it gave a roughly reversed ranking of
model types compared with FPOS (Fig. 3B),
i.e. in increasing order: (1) AICc-best, (2) step-
wise and W, > 0.7 (similar), (3) full model, (4)
W, > 0.9. The difference between full model and
stepwise was more consistent for FNEG than
for FPOS (see Appendix 2). Finally, FTOT as
a combined error measure showed model type
effects that were generally very small relative
to the overall magnitude of the error (Fig. 3C
and F). Full models, stepwise regression and
W, > 0.7 were always very similar in FTOT. At
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large sample sizes, AICc best was the worst and
W, > 0.9 the best, while at small sample sizes,
there was virtually no model type effect. When
using BIC instead of AICc (open circles in Fig. 3;
see also Appendix 3), FPOS generally decreased
while FNEG increased. The only setting where
FTOT was visibly affected was the analysis of
the “best” model at large sample sizes, where
BIC best performed better than AICc best.

Effect size estimation

As in the case of parameter identification, full
details of the results are visualized in Appen-
dix 2. For both informative and uninformative
predictors, the accuracy of effect size estimation
was dominated by predictor correlation and IPR,
while statistical methodology played a minor
role. There was hardly any estimation bias with

uncorrelated predictors, irrespective of other set-
tings (these results are not plotted here, see
Appendix 2). With correlated predictors (Fig. 4),
the direction of bias reversed from the low to
high IPR for informative predictors (Fig. 4A),
while it remained the same (negative) for unin-
formative predictors, but with a stronger bias at
high IPR (Fig. 4B).

The effects of model type (NHST and
AICc-IT methods) were inconsistent and gen-
erally very small relative to the above effects.
These results again refer to correlated predictors
as bias was negligible with uncorrelated predic-
tors. For informative predictors, a robust model
type effect appeared at low IPR, where bias
increased from SRPE to AICc model averaging
to full models (Fig. 4A top half). For uninforma-
tive predictors, SRPE had the largest bias of the
three methods with large samples and low IPR
(Fig. 4B top right), while it had the lowest bias
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of the three with small samples and high IPR
(Fig. 4B bottom left). The AICc model averaging
method was intermediate in both cases. There
was little model type effect in the remaining
settings, although the magnitude of the bias was
sometimes very marked. Using BIC instead of
AICc changed the results very slightly (see also
Appendix 3). In nearly all cases with a visible
difference, BIC reduced parameter estimation
error compared to AICc, but model averaging

still showed a similar performance as the NHST
methods, particularly SRPE.
Discussion

Identification error in relation to sample
size and collinearity

Our focus here was to compare three statistical
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model types under a number of realistic settings,
but the effect of these settings on parameter iden-
tification and estimation error generally overshad-
owed the effect of model type itself. As expected,
false detection and detection failure were roughly
inversely proportional (see also Derksen & Kesel-
man 1992, Raffalovich et al. 2008). False detec-
tion dominated in large samples and detection
failure in small samples. Ecological studies may
sometimes have even more extreme sample sizes
than our “large” and “small” samples, so our
simulations suggest that ecologists may quite
often run into problems with identification errors.
Correlation between predictors strongly amplified
these issues. The adverse effects of multicollinear-
ity have repeatedly been underlined in the litera-
ture (Graham 2003, Freckleton 2011), but predic-
tors are generally considered collinear only from
an r value of 0.5 upwards. Here, we showed that
predictor correlation as low as 0.3 can severely
impair parameter identification success.

The increase of the dominant detection error
rate with collinearity depended on IPR. The
identity of informative predictors is by definition
unknown to the researcher, so it seems crucial to
remove predictor interrelation as much as possi-
ble from the data before analyzing them. This is
best done in the design, e.g. by applying exper-
imental treatments in a balanced and crossed
manner. For cases in which experimental control
is impractical, at least two methods have been
recommended: residual regression and principal
component regression (Graham 2003). Remov-
ing collinearity can be difficult with small sam-
ples in which moderate correlations between
predictors may often become non-significant and
therefore “undetected” (Jennions & Mgaller 2003,
Nakagawa 2004), and if the underlying cor-
relation structure is weak and the true values of
correlations are unclear due to their broad error
margins (Garcia-Berthou 2002, Budaev 2010).
Further studies are urgently needed to identify
and test strategies to reduce bias in the analysis
of such data sets. Finally, we note that the statis-
tical removal of collinearity will lead to correct
statistical results, but it will not clarify the rela-
tive importance and the causal relations of multi-
ple, correlated explanatory variables. Again, the
experimental manipulation of correlated factors
is the most effective solution to this problem.

Identification error and model type

When discussing the model type comparisons
here, we focus on overall patterns. Looking
at the detailed results (see Appendix 2), the
model type specific relative magnitudes of iden-
tification error and estimation bias can often be
predicted from (1) the ratio of informative and
uninformative predictors in the given setting and
model type, (2) predictor interrelation, and (3)
the effect size estimates of the given predictor
type in the varying interrelation analysis.

Where both FPOS and FNEG were pres-
ent (small samples), the two yielded a roughly
inverse ordering of model types, again reflecting
the trade-off between the two error types (see pre-
vious section). The first point of particular inter-
est was the relative performance of full models
and stepwise regression. Recent methodologi-
cal papers criticized the use of stepwise regres-
sion techniques for parameter identification, and
recommended alternative methods such as full
models (Mundry & Nunn 2009, Forstmeier &
Schielzeth 2011) and information theory (Whit-
tingham et al. 2006). Among IT methods, the
historically most-widely used one in ecology is
the AICc-best approach which performed rather
poorly in our simulations (and it was among the
worst in the study of Raffalovich et al. 2008). It
exhibited considerably lower detection failure in
small samples than full or stepwise models, but
much higher false detection rates at both small
and large sample sizes, thereby often having
higher overall identification error rate (FTOT)
than the two NHST methods. However, these
findings must be viewed with caution owing to
our low confidence in the AICc-best model. Even
with the extremely permissive threshold differ-
ence of dAICc < 2 from the best model (Symonds
& Moussalli 2011), the AICc-best model was
“truly” the best in generally less than 10% of the
cases (results not shown here). We also simulated
multimodel inference using parameter weights,
which give a quantitative measure of support
for a certain parameter in the candidate model
set and thereby take into account model uncer-
tainty (Burnham & Anderson 2002). Using the
parameter weight threshold of W, = 0.7 reduced
FPOS and increased FNEG compared with AICc-
best, producing very similar results to the NHST
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methods. The threshold of W, = 0.9 seemed
suboptimal, yielding very low FPOS but consid-
erable FNEG. In settings where the given error
type reached notable levels, these differences
between the AICc-based approaches were rela-
tively immune to data set characteristics. There-
fore, using parameter weights with a moderately
high threshold value could provide a viable alter-
native to NHST methods, with the added benefits
of enabling direct parameter and model compari-
sons (Symonds & Moussalli 2011).

Note that model simplification using AIC(c)
may to some extent be doomed to fail because
this information criterion was born under the
philosophy of no true zero effects (Burnham &
Anderson 2002). In other words, AIC(c) is less
well designed for parameter identification than
for parameter estimation (Burnham & Ander-
son 2002). It is therefore an important ques-
tion whether the results would change quali-
tatively when using other information criteria
with different characteristics. A straightforward
choice would be BIC which may be slightly
better designed for parameter identification
and less well for predicting future observations
than AIC(c), although the two differ only in
their penalty term for model complexity (Yang
2005, Ward 2008). We therefore recalculated
all analyses using BIC instead of AICc. The
results exhibited a surprising similarity to those
with AICc. As expected, BIC often shows lower
FPOS and higher FNEG than AICc in parameter
identification, but the total identification error
rate only differs between AICc best and BIC best
and at large sample sizes. However, despite its
sample size specific advantage over AICc best,
BIC best still does not represent the ideal solu-
tion for parameter identification, and the overall
difference (across sample sizes) between the BIC
based and the NHST methods is small.

Full models are used in a similar number
of studies as stepwise methods, although we
note that it is often not clear from a paper if
and how model selection or simplification was
conducted. Interestingly, one of the central rea-
sons why stepwise regression has originally been
recommended was the reduction of parameter
detection uncertainty caused by the presence of
uninformative predictors in the full model, i.e.
reduced FNEG or Type II error rate (see e.g.

Hocking 1976, Aiken & West 1991). However,
reviews of the topic (Anderson ef al. 2001, Whit-
tingham et al. 2006) as well as simulation studies
(Lovell 1983, Mundry & Nunn 2009, Forstmeier
& Schielzeth 2011) emphasized the other side
of the coin, which is increased FPOS (i.e. Type
I error rate) in stepwise regression compared
with full models. In our study, increased FPOS
of stepwise regression was most marked in sit-
uations with low overall FPOS. There was very
little FPOS difference between stepwise and full
models in the case with highest overall FPOS
(see Appendix 2). On the other hand, stepwise
regression consistently reduced FNEG compared
with full models in small samples, where FNEG
was high, which is in line with our expectations
(Hocking 1976, Miller 1992). When looking at
overall identification error rate (FTOT), differ-
ences between stepwise and full models were
generally small. If FPOS and FNEG are equally
important to us (which will depend on the goal of
the given study; Burnham & Anderson 2002), we
cannot dismiss stepwise regression based on its
performance in parameter identification. Indeed,
reduction of a high FNEG when using stepwise
regression can be of practical importance in
small samples, which are commonplace in some
fields of ecology and evolution (see also Moran
2003, Nakagawa 2004, Martinez-Abrain 2007).
It might be proposed that higher among-pre-
dictor correlations than used here would make
stepwise selection more prone to misidentifying
predictors. However, a previous study using high
predictor correlations (one-third of them exceed-
ing 0.5) yielded very similar conclusions to ours,
with better performance of stepwise regression
than AIC(c) (Raffalovich et al. 2008). On the
other hand, we believe that between-predictor
correlations higher than 0.5 are principally not
due to biological relationships but wrong param-
eterization such as the use of mathematically
or mechanistically interdependent variables, and
they can and should be avoided (see also Freck-
leton 2011). The true value of predictor correla-
tions and its effects must be studied further. As
a guideline for future simulation work, there are
alternative model simplification methods such
as ridge regression or the lasso that are not rou-
tinely used in our field, and some of these might
reduce overall identification error compared with
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stepwise or full models (Murtaugh 2009, Dahl-
gren 2010).

Effect size estimation bias

The most important message from the results of
the effect-size based approach is that bias in the
estimates is mainly due to correlation among
predictors (Freckleton 2011). With uncorrelated
predictors, there was hardly any bias irrespective
of sample size, predictor number, IPR or statisti-
cal approach (see Appendix 2). With correlated
predictors, even at the low correlation level
of 0.3 we used, there was sometimes serious
estimation bias which varied in magnitude and
also in direction in response to system settings,
particularly IPR.

When looking at the effect of model type,
the most surprising pattern is the relative per-
formance of full model and stepwise regression.
If we are to follow the philosophy of effect size
based inference in stepwise regression (Nak-
agawa 2004, Nakagawa & Cuthill 2007), we
must obtain meaningful (i.e. non-zero) effect
size estimates also for the removed terms, for
example by reintroducing them one by one into
the final model (Hegyi & Garamszegi 2011).
Here we tested this SRPE method for the first
time. Surprisingly, the method did not increase
the effect-size bias compared with the full model
in most settings with an observable model type
effect (see the top and the bottom left of Fig. 4).
It therefore seems that the increased effect-size
bias in stepwise regression compared with full
models is largely due to the failure to present
non-zero estimates for the removed terms (Whit-
tingham ez al. 2006, Lukacs et al. 2010). How-
ever, in our simulations the effect-size bias was
sometimes even lower in stepwise regression
(SRPE) than in full models, and this requires fur-
ther explanation. The reduced bias likely reflects
the reduction of parameter number, and there-
fore a reduced distortion due to collinearity
(Hocking 1976, Graham 2003, Raffalovich ez al.
2008) in stepwise compared with full models.
Our results indicate that the reintroduction of
removed parameters into the final model largely
eliminates and may even reverse the effect-size
bias caused by stepwise regression when com-

pared with full models (see also detailed results
in Appendix 2).

The estimation accuracy of AICc model aver-
aging was always intermediate between the full
model and stepwise methods. Possible ways of
further improving the performance of model
averaging are to establish confidence model sets
(Whittingham ef al. 2006) and to further refine
these by removing the unsupported, complex
counterparts of nested submodels (Richards
2008). Establishing such methods in ecological
statistics will require agreement on threshold
values for confidence sets, and publicly available
statistical software for implementing Richards’
algorithm in large candidate sets. Future stud-
ies should also examine the performance of
information criteria other than AIC(c) (box 1 in
Grueber et al. 2011). When we recalculated our
model averaging with BIC, even the setting-spe-
cific differences from AICc were very small.
Interestingly, BIC seemed to relatively consis-
tently reduce the estimation bias compared with
AlCc, although the differences were extremely
small. The direction of the difference therefore
does not agree with the “trade-off” principle of
Yang (2005) as BIC seemed to outperform AICc
in both identification and estimation. Similarly to
what we found for parameter identification, BIC
model averaging did not stand out as a better
method overall for parameter estimation than
the NHST methods. We can therefore conclude
that the surprisingly small overall difference in
identification and estimation error we detected
between full model, stepwise and IT approaches
does not change when replacing AICc with BIC.

Conclusions and future directions

Our results highlight that the choice of the sta-
tistical method may often be less important for
obtaining reliable results than aspects of the
quality of the data set such as sample size and
predictor interrelation (Garamszegi ef al. 2009).
This finding must be borne in mind during an
active debate over competing ways of statistical
modeling (Stephens et al. 2007, Guthery 2008),
when factors that are perhaps more influential
than model type, such as the collinearity of pre-
dictors, are seldom mentioned (Zuur et al. 2010,
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Freckleton 2011). Stepwise regression showed
similar overall parameter identification accuracy
to full models and the exact outcome depended
on data set attributes. The SRPE approach
involving parameter reintroduction (Hegyi &
Garamszegi 2011) seemed to mitigate the well-
known extreme parameter estimation bias of
classical stepwise regression and even surpassed
the estimation accuracy of full models in some
settings with correlated predictors. The perfor-
mance of the AICc- and BIC-based approach
was extremely sensitive to the exact method. The
parameter identification success of the parameter
weight method with a moderately high threshold
value was similar to the NHST methods, and the
same applied to the parameter estimation accu-
racy of AICc and BIC model averaging.

An important extension of our present work
will be the testing of effect size bias in the
presence of interaction terms. Full models with
interactions provide an interpretable output for
main effects only if the predictors are uncor-
related, centered, bivariate normal and perfectly
balanced (Aiken & West 1991). These conditions
are hardly ever met in ecology or evolution,
especially in the case of categorical predictors
(although see recommendations for centering in
Schielzeth 2010). Future studies will particularly
have to show whether effect sizes from the SRPE
approach are more or less biased than those from
full models in the presence of non-significant
interaction terms (Hegyi & Garamszegi 2011).
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Appendix 1: Varying interrelation analysis
Material and methods

In this analysis, we modeled the presence of different types of predictor correlations in a single data
set and its effect on the performance of the three different statistical model types. We simulated 1600
data sets with 12 predictors in each of them. To maintain the ratios of predictors to observations simi-
lar to those in the uniform interrelation analysis presented in the main body of the paper, we set n = 36
as a small sample size (800 data sets) and n = 240 as a large sample size (800 data sets). All predictor
correlations or effects were set to either » = 0.3 (informative predictors) or r = 0.0 (uninformative
predictors). All data sets included six informative and six uninformative predictors, representing six
different combinations of cases (with two predictors per category): (i) informative predictors uncor-
related with other predictors, (i) informative predictors correlated with an informative predictor,
(ii1) informative predictors correlated with an uninformative predictor, (iv) uninformative predictors
uncorrelated with other predictors, (v) uninformative predictors correlated with an informative pre-
dictor, (vi) uninformative predictors correlated with an uninformative predictor. All data sets were
processed for parameter identification error (false detection probability FPOS and detection failure
probability FNEG) and effect sizes in the same way as in the main analysis.

Results
False detection probability (FPOS)

False detections were mainly determined by an interactive effect of sample size and correlation type.
The “correlated with informative” group showed higher FPOS than the groups “uncorrelated” and
“correlated with uninformative” with the latter two being similar to each other. The elevated FPOS
of “correlated with informative” was much more pronounced at the larger sample size. The effect of
model type was relatively small, with generally higher FPOS for AICc best. The two NHST-based
methods were similar to each other and to W, > 0.7, with occasionally higher FPOS for stepwise than
for full models. The W, > 0.9 setting showed very low FPOS (Fig. A1_1A).

Detection failure probability (FNEG)

With large samples, there were almost no detection failures irrespective of setting. With small
samples, the “correlated with informative” group again dominated the other two correlation types.
Regarding model type, AICc best always gave the lowest and full models and especially W, > 0.9 the
highest FNEG, with stepwise regression showing lower FNEG than full models (Fig. A1_1B).
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Fig. A1_1. Parameter identification error rates and the effect sizes of informative and uninformative predictors in
the varying interrelation analysis, in relation to model type and simulation settings (means + SEs). Dotted lines indi-
cate the effect size specified in the simulation (i.e. the true population level effect size of the given parameter type).
(A) false detection, (B) detection failure, (C) effect size of informative predictors, and (D) effect size of uninformative
predictors. Corr = correlated, uncorr = uncorrelated, inf = informative, uninf = uninformative, Full = full model, Step =
stepwise regression, Best = AlCc best, SRPE = stepwise-reintroduction for parameter estimation, MA = AICc model
averaging.

Effect size of informative predictors

Both the overall parameter estimation bias and the model type effect varied strongly with correlation
type and sample size (Fig. A1_1C). Informative predictors correlated with informative predictors
showed a large downward bias, while those correlated with uninformative predictors exhibited a
slight upward bias. Overall bias was negligible with uncorrelated predictors. Where a model type
effect was visible (in three of four settings of the two categories of correlated predictors), full models
always gave the largest bias. SRPE only slightly differed from AICc model averaging and the direc-
tion of the difference also depended on the setting.

Effect size of uninformative predictors

Among uninformative predictors, parameter estimation bias was very small or absent in uncorrelated
predictors and those correlated with other uninformative predictors (Fig. A1_1D). Uninformative
predictors correlated with an informative predictor gave drastically downward biased estimates, i.e.
negative effect sizes. Model type influenced bias only at the small sample size, where full models
showed the largest and SRPE the smallest bias.
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Appendix 2: Detailed results.
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Fig. A2_1. Rates of (A-D) false detection and (E-H) detection failure in relation to the model type and simulation
settings (means * SEs). A and E: large sample and uncorrelated predictors; B and F: large sample and correlated
predictors; C and G: small sample and uncorrelated predictors; D and H: small sample and correlated predictors.
IPR = informative predictor ratio, Full = full model, Step = stepwise regression, Best = AICc best model.
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Fig. A2_2. Total parameter identification error rate (FTOT) in relation to model type and simulation settings (means
+ SEs). (A) Large sample and uncorrelated predictors, (B) large sample and correlated predictors, (C) small sample
and uncorrelated predictors, and (D) small sample and correlated predictors. IPR = informative predictor ratio, Full
= full model, Step = stepwise regression, Best = AICc best model.
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Fig. A2_3. Estimated effect sizes of (A—D) informative predictors and (E—H) uninformative predictors in relation to
model type and simulation settings (means + SEs). Dotted lines indicate the effect size specified in the simulation
(i.e. the true effect size of the given predictor type). A and E: large sample and uncorrelated predictors, B and F:
large sample and correlated predictors, C and G: small sample and uncorrelated predictors, D and H: small sample
and correlated predictors. ES = effect size, IPR = informative predictor ratio, Full = full model, SRPE = stepwise-re-
introduction for parameter estimation, MA = AICc model averaging.
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Appendix 3: Using BIC instead of AlCc
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Fig. A3_1. Rates of (A-D) false detection and (E—H) detection failure in relation to model type and simulation set-
tings (means + SEs) when using BIC. A and E: large sample and uncorrelated predictors, B and F: large sample
and correlated predictors, C and G: small sample and uncorrelated predictors, D and H: small sample and cor-
related predictors. IPR = informative predictor ratio, Full = full model, Step = stepwise regression, Best = BIC best
model.
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Fig. A3_2. Total parameter identification error rate (FTOT) in relation to model type and simulation settings (means
+ SE) when using BIC. (A) large sample and uncorrelated predictors; (B) large sample and correlated predictors;
(C) small sample and uncorrelated predictors; (D) small sample and correlated predictors. IPR = informative predic-
tor ratio, Full = full model, Step = stepwise regression, Best = BIC best model.
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Fig. A3_3. Estimated effect sizes of (A—D) informative and (E—H) uninformative predictors in relation to model type
and simulation settings (means + SEs) when using BIC. Dotted lines indicate the effect size specified in the sim-
ulation (i.e. the true effect size of the given predictor type). A and E: large sample and uncorrelated predictors, B
and F: large sample and correlated predictors, C and G: small sample and uncorrelated predictors, D and H: small
sample and correlated predictors. ES = effect size, IPR = informative predictor ratio, Full = full model, SRPE = step-
wise-reintroduction for parameter estimation, MA = BIC model averaging.
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