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The suitability of four asymptotic growth equations for describing growth of
length in populations of Anodonta piscinalis was studied. The Kriiger function
showed the best fit with the observed values, but the other three equations (von
Bertanlanffy, Gompertz, logistic) were not much worse. The Kriiger function
was also the best when lengths of very old and young individuals were extra-
polated from truncated data.

Although the equations closely simulated the sets of material, we could find
little evidence that their parameters (growth constant, asymptotic length) were
suitable for comparisons between populations. Different cohorts and sexes within
a population produced very variable numerical values for these parameters. The
correlation between the mean length of the third annulus in a population and
the growth constant produced by different equations for the same set of data
ranged from 0.539 to —0.640. The von Bertanlanffy equation was the least
unsuitable for producing parameters for comparisons between populations.

Erkki Haukioja, Department of Zoology, Institute of Biology, University of Turku, SF-
20500 Turku 50, Finland.
Tuomo Hakala, Department of oology, Institute of Biomedicine, University of Turku,

SF-20520 Turku 52, Finland.

1. Introduction

Asymptotic equations are used extensively in
growth studies because they fit reasonably well
with empirical data and because they include
only three parameters, two of which are inter-
preted as biologically meaningful (growth con-
stant, asymptotic level). In relation to their
wide use, analyses of their biological relevance
and comparisons between different equations
are rare (e.g. Kriiger 1969, 1973).

In the present paper we have analysed data
on the growth in length of a freshwater mussel
(Anodonta piscinalis) in 15 populations — with
three aims: First, to compare five ways of
solving the parameters of the von Bertanlanffy
(von Bertanlanffy 1938) equation. Secondly, to
compare the von Bertanlanffy equation and
three other asymptotic equations (Gompertz,
logistic, Kriiger) as regards their fit with
empirical data and their usability for extra-
polating values beyond the range used to

calculate the parameters. Thirdly, to show that
in spite of a good fit of an asymptotic equation
with empirical data, the biological validity of
comparisons of parameters derived from different
populations is highly dubious.

2. Material and methods

A. Determination of parameters

von Bertanlanffy equation

The equation is usually presented in the form

L, = Loo (1 — e—K()) (e.g. Ricker 1958),
where

L, = length of an animal at time ¢
Loo = asymptotic length
K = growth constant

ty theoretical time with zero length.

The parameters were solved in the following five ways:
1) by computing the Ford-Walford (Ford 1933, Walford
1946) line, 2) by fitting the Ford-Walford line by eye,
3) by Rafail’s (1973) method (five iteration times), 4)
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by Allen’s (1966) method (five iterations), and 5) by
iterating the asymptotic length from the linearized von
Bertanlanffy equation given by Rafail (1973).

Gompertz, logistic and Kriiger equations

The Gompertz equation (Winsor 1932):

y = YooeBe CI,

where

= length of an animal at time ¢
Yoo = asymptotic length

C = the growth constant

B = a constant

and the logistic equation (Verhulst 1838):

Yoo
=
1 + be Kt ’
where
K = the growth constant
b = a constant

and the Kriiger equation (Kriiger 1962):

Yoo
n=————"0
N (t+7)
where
N = the growth constant and
r = a constant

were solved by iterative procedures as given by Kriiger

(1973).

B. Material

The Anodonta piscinalis measurements used in the
computations were made in southwestern Finland in
1971—1974. They relate to samples from 15 different
populations. Seven samples are from the river Paimion-
joki, five from the Loimijoki (a tributary of the river
Kokemienjoki), two from different parts of the Koke-
maienjoki, and one from the Uskelanjoki. The minimum
sample size included 99 measurements. Calculations
concerning a single population were made from material
collected from the Paimionjoki at Santio, Koski com-
mune.

Lengths (mm) of mussels at the beginning of each
growth period were measured according to the dark
winter rings. The usability of these as the basis for a
growth study has been treated elsewhere (Haukioja &
Hakala 1978). The method used is essentially the same
as that used in measuring growth rings in scales or
otoliths of fish. However, it is more exact in mussels,
because the length of preceding winter rings can be
measured directly without using the ring width/total
length relationship.

Equations were computed from unweighted mean
lengths of winter rings. This practice decreases the
effects of growth-selective mortality (Parker & Larkin
1959).
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C. Aims and methods

The most common use of a growth curve is obviously
to calculate the length or weight of an animal from its
age. This is needed especially in calculating biological
production. What is required is an equation that
accurately simulates the empirical values from which
its parameters were determined. At the same time it
smooths the possible irregularities in the data. In
practice it is useful if the equation is also able to predict
values outside the measured range. It is further advan-
tageous if the equation is widely applicable and easy to
compute.

The primary aim, agreement between predicted and
observed values, was tested using the logarithmic
deviations between simulated and observed values,
according to the equation proposed by Kriiger (1973):

Slog = V

This meant that samples with less than four age
classes could not be used and therefore calculations with
truncated data (see later) had to be based on fewer
than 15 populations.

From the above formula, the so-called percentage
mean deviation (Kriiger 1973) was calculated:

(log y — log )2
n—3

s, = (107°% - 100) — 100

The use of logarithms in the above formulae reduces
the effects — perhaps large absolutely but small relatively
— of deviations caused by large individuals. This is a
meaningful practice, as mean lengths in the older age
classes are usually based on smaller samples than in the
more abundant younger year classes. In production
biology the young age classes usually make up the bulk
of production, which also emphasizes the accuracy in
the lower part of the growth curve.

Another aim for growth equations is to obtain para-
meters for comparing different sexes, populations, species
etc. In this case the most important parameters are the
growth constant and the asymptotic length. For meaning-
ful comparisons these parameters must indicate some
real biological features of the group studied. This was
checked by comparing within-population and between-
population variances in the above parameters.

3. Accuracy of iteration

If numerical values for all parameters in
growth equations are obtained arithmetically,
deviations between observed and predicted
values are directly comparable. When para-
meters are determined by iteration, discrep-
ancies may also be due to the inaccuracy of
iteration. The accuracy can be raised to a high
level. But this is justified only if the point
minimizing the difference between observed and
predicted values can be found by an efficient
searching method.

The step length in iterations was 0.5 mm in



Ann. Zool. Fennici 16. 1979

the von Bertanlanffy, Gompertz, and logistic
equations. Values in iterations were computed
from 30 below to 125 mm above the mean
length of the oldest age class. Computation
took practically the same time in each case, and
the von Bertanlanffy equation gave better
results than the Gompertz or logistic equations,
especially the latter (Table 1).

Table 1. Sensitivity of the von Bertanlanffy (vB), Gompertz (G)
and logistic (I) equations to step size of the iterated parameter near
the minimum value of Loo. Calculated for material from Santio.

vB G 1
Slog % Slog %o Slog %
min — 0.5 mm 0.0085 0.0186 0.0374
min 0.0081 ;g 0.0175 i?) 0.0357 lzg
min + 0.5 mm 0.0083 0.0182 0.0417 ~

When the additive term (r) in the Kriiger
function was iterated, the step size was put at
0.05 and the range from 0.0 to 10.0. A step size
near the minimum point gave the same relative
change for 5, as in the logistic equation, al-
though absolutely the result was more accurate:

iterated value Slog difference as a
percentage of
the minimum

minimum — 0.05 0.0075 11.9

minimum 0.0067 9'0

minimum -+ 0.05 0.0073 :

To sum up, the step size in iteration had the
least effect on the von Bertanlanffy equation.
The following in order were the Gompertz,
logistic and Kriiger equations. When equations
were evaluated according to the computing time
needed for iteration, the Kriiger equation was
the best. The others did not differ significantly,
the time needed for iteration being largely
determined by the step size and the range which
the programmer sets for the parameter iterated.

4. Comparison of different methods of
fitting the von Bertanlanffy equation

The computed Ford-Walford plot gave much
lower s,¢ values than the method based on
graphical fitting (mean values for s, were
4.8 and 18.8, respectively). It is difficult to
generalize this result, because the graphical
method is subjective, especially in weighting the
extreme values. Therefore graphical determi-
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nation of the Ford-Walford line has not been
used further in the present treatment.

When the other methods were compared, the
iteration method gave the best fit, but Allen’s
method was also good (Table 2). The results of
the iteration method are used later when the
von Bertanlanffy equation is compared with the
others. Rafail’s and Allen’s methods were
economical in computation. However, on ac-
count of its accuracy, Allen’s method was the
most suitable for calculating without an electro-
nic computer.

The mean values of Loo and K generated in
different ways did not deviate significantly
(Table 2).

Table 2. Comparison of four methods for fitting the von Bertan-
lanffy equation to 15 populations of Anodonta piscinalis.

Ford-Walford Rafail Allen iteration
S 4.80 7.46 3.42 3.15
SE 1.265 1.783 0.690 0.629
Loox 106.2 107.8 106.9 107.9
SE 5.93 6.64 5.76 5.77
Kz 0.315 0.332 0.312 0.305
SE 0.024 0.045 0.024 0.024

5. Compaﬁson of the four equations

A. Fit between measured and predicted values

Table 3 gives the mean difference between
simulated and measured values in the four
equations with the same original data. The best
fit was arrived at by the Kriiger function, fol-
lowed by the von Bertanlanffy, Gompertz, and
logistic equations. The differences were small,
however, and each of the equations gave the
best fit in more than one population (Table 3).

Table 3. Compatibility between actual and simulated lengths
fitted by four growth equations for 15 populations of Anodonta

piscinalis. vB = von Bertanlanffy, G = Gompertz, 1 = logistic,
K = Kriiger. The row “best’ indicates in how many cases each
equation gave the best compatibility between actual and simulated
lengths.
vB G 1 K

Sox 3.15 4.40 7.22 2.82

SE 0.629 0.493 0.907 0.561

min. 0.09 1.97 0.57 0.66

max. 8.31 7.91 12.15 8.14
best 4 3 2 6
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The value for the first year often decreases the
fit between the actual and predicted values. This
was tested with the above set of data but
omitting the first annulus from the computation.
With these data, also, the order of the different
equations was the same as with untruncated
material (Table 4). The differences between
the equations were even smaller than with the
complete set of data.

Table 4. Compatibility between actual and simulated lengths from
the second annulus onwards. Equations were fitted for 11 Anodonta
piscinalis populations. For explanations, see Table 3.

vB G 1 K
S, % 3.02 3.21 3.48 2.98
SE 0.898 0.836 0.786 0.917
min, 0.55 0.68 1.18 0.50
max. 9.66 9.67 9.90 9.65
best 1 1 2 7

B. Suitability for extrapolation

When studying aquatic animals, such as
fishes — and the same is true to a lesser extent
of mussels —, it is not always possible to catch
and/ or measure enough specimens of even the
abundant age classes. Difficulties may arise with
the first age-class, which, owing to its small size,
cannot be caught by the same methods as older
age classes. In the young age classes also, the
catching method may take a disproportional
number of large individuals. Furthermore, in
back-calculation of annulus lengths, it is not
always possible to recognize the first, worn
annuli. If the material consists only of individuals
with distinct annuli, the results will be biased.
In the old year classes the number of individuals
may also be so low that it does not allow reliable
observed values. If, in situations of this kind,
estimates of the first and/or very old year classes
are needed, they may be calculated by extra-
polation from growth equations.

Finding the length of the first annulus by extrapolation

Table 5 gives deviations between empirical
first-year values and the values simulated by
different growth equations. Fitting of these was
performed from the second ring onwards. Here
also, the Kriiger function gave the best fit,
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followed by the Gompertz, von Bertanlanffy,
and logistic equations.

Table 5. Percentage difference between actual and simulated length
of the first annulus in 11 populations of Anodonta piscinalis. Simulated
values were derived from equations fitted without the first-year
length. For explanations, see Table 3.

vB G 1 K
Error (%)
x 41.5 32.7 43.9 23.6
SE 11.01 5.74 6.95 3.67
min. 13.2 4.3 1.4 2.2
max. 142.6 58.2 73.1 42.7
best 2 3 1 5

Finding the length of old year classes by extrapolation

For Table 6 the growth equations were
determined from data truncated by 2 years from
the upper end of the age distribution. Values
were then calculated for the year class 2 years
older than the highest age used in deriving the
equations. When these values were compared
with the actual values, the Kriiger function was
again the best and the von Bertanlanffy equation
the next best.

Table 6. Percentage difference between the actual length of the
maximum age recorded and the value calculated for the corre-
sponding age in seven populations of Anodonta piscinalis. The latter
values were obtained from equations fitted without the values for
the two oldest age classes in each population. For explanations,
see Table 3.

vB G 1 K
Error (%)
x 5.33 9.54 14.19 4.20
SE 1.209 2.177 1.514 1.174
min. 1.0 0.4 7.4 0.2
max. 10.2 18.9 18.6 8.1
best 3 1 0 3

6. Are the parameters of asymptotic
growth equations susceptible of
biological interpretation?

Next we study how growth constants and
asymptotic lengths derived from the.above
growth equations correlate with independent
estimates of growth rate and maximum length.
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A. Growth constant versus growth rate

The mean length of mussels at a given annulus
indicates how fast they grow at a particular
site. It is subjective to take a specific annulus as
a criterion for comparisons, but the effects of
such a decision are slight (Fig. 1). We chose
the length of the third annulus for the reasons
mentioned by Haukioja & Hakala (1978).

Fig. 2 shows correlations between growth rates
(indicated by the length of the third annulus)
and growth constants included in the different
equations. The Kriiger equation gave the best
correlation but unfortunately a negative one.
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The positive correlation given by the von
Bertanlanffy equation was almost as good, and
an attempt in which the parameters of the von
Bertanlanffy equation were obtained by fitting
the Ford-Walford line by eye yielded an even
higher correlation (r = 0.813, p < 0.001). The
correlations obtained with the Gompertz and
logistic equations were low.

Kriiger (1970) states that the slope of the
Ford-Walford line is a better indicator of the
growth rate than the parameter K in the von
Bertanlanffy equation. Using the slope (b)
does not seem to change the situation (Fig. 3),
although Kriiger’s (1970) argument is logical.
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B. Asymptotic length versus maximum length

In the Santio population, where more than
2 000 individuals of Anodonta piscinalis were
measured, the maximum length recorded was
116 mm. We suppose that this value is not far
from the “true” maximum, because in this
population the oldest individuals die at ages of
7—9 years. The different growth equations gave
the following maximum lengths for the Santio
population:

von Bertanlanffy 126.0 mm
Gompertz 107.5 mm
logistic 100.0 mm
Kriiger 163.6 mm

The Kriiger function gave an impossibly high
value for a realistic maximum length. The
Gompertz and logistic equations gave values
typical of the oldest age classes. The von
Bertanlanffy equation overestimated the value
realized in any cohort.

C. Differences between cohorts

The use of growth equation parameters to
characterize certain- populations assumes that
growth equations can sift out figures that
characterize growth in a particular population.
The best equation is thus the one that is least
sensitive to intrapopulation variation.

The most important factors responsible for
variance in growth statistics in an Anodonta
piscinalis population are annual variation in
growth and sex (Haukioja & Hakala 1978).

50 60
3rd ANNULUS (mm)
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For studying the effects of these factors on
growth parameters we calculated growth equa-
t'ons separately for the different cohorts and for
both sexes in a sample of 650 specimens collected
at Santio in September 1974. The material
allowed equations to be computed for cohorts
1967—1970.

Table 7 gives the range of growth parameters
in this material as well as the range obtained
when the same parameters were computed for
each of the 15 populations. Variation between
cohorts accounted, on average, for more than
half the range found when the 15 populations
were compared. The von Bertanlanffy equation
seems to give the best (least variable) index for
the growth rate, and the logistic equation for
the maximum length. Owing to the variance
between cohorts, none of the equations gave
parameters which could be regarded as charac-
teristic of the Santio population.

Summarizing, any one of the parameters of
a growth equation is meaningful when combined
with the other two parameters. Together they
dictate the form and position of the growth
curve. When separated from this complex, they
are mathematical quantities lacking any clear
biological significance. This statement does not
rule out the possibility that they may be cor-
related with some environmental factors or
other parameters of growth.

7. Polynomials as a description of growth

Ordinary growth equations are considered
preferable to purely mathematical equations
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Table 7. The magnitude of the scatter and the extreme values (in parentheses) of parameters indicating asymptotic lengths (L, in mm)

and of the growth constants (C) given by the four growth equations. The entire material gives the interpopulation variance in the values
derived from 15 populations when both sexes were combined. The Santio sample gives the intrapopulation variance when a growth equation

was fitted separately for each sex and cohort.

Entire material Santio
@ +9 3 ?
L) vB 88.0 ( 81.0—169.0) 62.5 (112.5—175.0) 27.0 (142.5—169.5)
G 38.0 ( 69.5—107.5) 12.0 ( 89.5—101.5) 18.0 ( 97.0—115.0)
1 35.0 ( 65.0—100.0) 5.5 ( 82.5—88.0 ) 7.5 ( 86.5— 94.0)
K 61.8 (110.9—172.7) 61.5 (144.9—206.4) 105.5 (174.6—280.1)
C) vB 0.354 (0.122—0.476) 0.155 (0.174—0.329) 0.046 (0.179—0.225)
G 0.234 (1.045—1.279) 0.168 (1.215—1.383) 0.216 (1.184—1.400)
1 0.612 (2.015—2.629) 0.409 (2.488—2.897) 0.510 (2.472—2.982)
K 1.344 (0.944 —2.288) 0.746 (1.179—1.925) 1.133  (1.586 —2.719)

for two reasons: they have fewer parameters and
these are biologically interpretable. But as the
latter argument does not seem to hold, what is
the case with the former?

Polynomials were fitted for each of the 15
populations up to the point at which adding a
new term did not significantly improve the
result. The mean so between actual and
simulated values was 1.23 4+ 0.690, a lower
value than in any of the growth equations
considered above (Table 2). The upper limit
was reached with a third-degree polynomial in
11 samples, with a second-degree polynomial in
three samples and with a fourth-degree poly-
nomial in one sample. Therefore, with the
present material, polynomials contained at most
one or two parameters more than ordinary
growth equations and were more accurate. For
extrapolation and for comparisons between
populations they are totally unsuitable.

8. Conclusions

Above we postulated two requirements for
growth equations, ability to describe the data
and to produce parameters for comparisons.
The Kriiger function was the best for describing
the material, whether entire or truncated. In
extrapolations it also gave the best fit with actual
values. The von Bertanlanffy equation was
usually the second in order. The results arrived
at by the Gompertz and logistic equations were
not much worse. If the time needed for iterations
is taken into account, the Kriiger function was
again the best. On the other hand, the von

Bertanlanffy equation gives good and rapid
arithmetic solutions. When the two latter
equations are evaluated, perhaps the chief
disadvantage of the Kriiger function is that it
was developed so late. The von Bertanlanffy
equation already had an established position and
consequently a large number of applications,
e.g. in fishery research. However, the presence
of a turning point in the Kriiger equation, but
not in the von Bertanlanffy equation, gives the
former a potentially wider field of application.
This could be seen especially in the good fit
on extrapolating the length of the first annulus.
On the other hand, the von Bertanlanffy
equation can be fitted (by the Ford-Walford
line) even if the ages of some growth rings are
unknown.

It is worth stressing that if one simply wants
a good description of measurements, it matters
little which equation is used. The material
analysed in the present paper indicates that the
equation with the best fit is not specific for
Anodonta piscinalis. As different equations may
give the best fit in different populations, caution
is. needed in drawing conclusions based on one
or a few populations only.

None of the equations used proved good in
providing information for interpopulation com-
parisons. In the case of the growth constant this
is easy to understand. The growth rate, the
derivative of a growth curve, changes along
the curve. Therefore it is impossible to find a
single figure to describe an absolute growth
rate. That the asymptotic length is not suitable
for comparisons is less obvious, although its
purely mathematical nature has been recognized
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earlier (e.g. Kriiger 1969). Therefore, when
asymptotic growth equations are used, it is
important that the asymptote takes a value so
high that it is not reached in practice. This
condition is fulfilled by Kriiger’s function and
probably by the von Bertanlanffy equation, too.
With these equations it is possible to operate
with the ages actually observed in the field.

As the differences in suitability between the
equations seem to be slight, ‘it is more fruitful
to discuss why and when to use growth curves,
instead of discussing their relative suitability.

For the purposes mentioned above growth
equations are not especially suitable. Data can
be described more accurately with polynomials
of a low degree than with asymptotic growth
equations. In practice this is an easy way, as
computer programmes for fitting polynomials
are to be found in standard programme libra-
ries. As a source of extrapolated values ordinary
growth equations are useful but, until results
like those in Tables 5 and 6 are generally
available, there is no reason to believe that they
yield more realistic values than fitting by eye.

To us it seems more reasonable to present
lengths of animals at different ages as a vector
than to compute a growth equation for the
same data, unless the equation is to be used for
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some meaningful purpose, e.g. in a model.
Formulating a growth equation does not per se
add anything essential as compared with a
vector of lengths. It does not facilitate the
making of critical comparisons, either. On the
contrary, a certain. amount of information is
lost, and the false accuracy arrived at may even
be disadvantageous if it creates a feeling that
the growth process is understood. Furthermore,
growth equations are usually unrealistic because
they smooth out the seasonal variation in growth,
a characteristic feature of growth.

Presenting variances of lengths is easy when
vectors of lengths are used. They can be cal-
culated for growth equations, too, but again at
the price of losing information.

Growth rates within a species or between
related species of the same size can be compared
by using the length at a certain age as a criterion.
This criterion is not valid if the groups compared
have clearly different final lengths; for such
comparisons no good method is known to us.
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