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1. Introduction

In the last 20 years there has been an increasing
use of quantitative, computer-based methods in bio-
geography, particularly for descriptive and, to a lesser
extent, analytical (sensu Ball 1975) purposes.
Biogeography, particularly in its initial descriptive
phase, is concerned with devising adequate and use-
ful classifications of biogeographical patterns based
on known distributions of taxa within the geographi-
cal area of interest. Just as in numerical taxonomy and
descriptive ecology, quantitative techniques can assist
in deriving such classifications in a repeatable and
potentially unbiased way.

Computer techniques can be useful in several dif-
ferent ways within biogeography, for example for
data-extraction, data-storage, map-production, data-
analysis, simulations, and hypothesis-testing. Here I
concentrate on quantitative analysis of complex bio-
geographical data consisting of presence/absence
(+/-) or, more rarely, quantitative data for many, say
m, taxa in several, say n, areas. The major purpose of
such analysis is to detect any general, repeatable
patters, so-called “structure”, within the data, in the
form of biotic elements (groups of taxa with similar

distributions) and biotic regions (groups of areas with
similar biotas). This exploratory data-analysis results
in a simplification and description of the original m x
n data in terms of a smaller number of elements
and/or regions. This simplification can be used to
generate hypotheses about causes and origins of these
patterns that may subsequently be tested ex-
perimentally, compared with independent data (e.g.
geological history), or incorporated into predictive
models. Quantitative descriptive biogeography thus
leads logically from an exploratory, hypothesis-
generating phase to an analytical, confirmatory,
hypothesis-testing phase (Birks 1976), and can help
not only in detecting but also in explaining patterns
central to Buffon’s Law in biogeography, namely that
different areas support different biotas.

Delimitation of biotic elements and regions is
valuable for several reasons. (1) It is useful to group
taxa of similar distributions because physiological
studies on, for example, climatic tolerances need not
be considered in isolation but related to other taxa
with similar or contrasting distribution. (2) It is im-
portant to see which patterns are common to several
groups (e.g. birds, plants, butterflies) and hence
likely to be of regional significance and which are
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unique to particular groups by comparing geo-
graphical patterns or “regionalisation” of biotic re-
gions for different groups (e.g. Jarvinen & Viisidnen
1980). (3) It can be valuable to see where biotic ele-
ments overlap in distribution and hence which areas
contain a range of elements and would merit conser-
vation on the grounds of biogeographical diversity.

The aims of this paper are (1) to outline briefly the
main aims of quantitative biogeography and the
reasons for using numerical classificatory or parti-
tioning methods in descriptive biogeography, (2) to
review recent numerical developments in classif-
ication techniques that are of potential importance in
quantitative biogeography, and (3) to suggest pos-
sible future developments, particularly in linking de-
scriptive and analytical biogeography. No attempt is
made to discuss specific biogeographical analyses or
data-sets or to present examples of quantitative stud-
ies. The emphasis throughout is on recent devel-
opments in methodology, many of which have oc-
curred outside biogeography and ecology, but which
[ think could be potentially valuable in future quanti-
tative biogeographical analyses.

2. Main aims and interests in quantitative
biogeography

Given a matrix of distributional data for m taxa in
n regions with entries of 1 or 0 when species i is pre-
sent or absent respectively, in region k, two major
types of quantitative analysis can be recognised
(Simberloff & Connor 1979, Connor 1987a). There
is analysis of affinities between distributional patterns
of taxa, so-called R-mode analysis, resulting, for de-
scriptive purposes, in biotic elements, here defined as
groups of taxa that have similar geographical distri-
butions today within the geographical area of interest.
The term element is used here as a purely descriptive
concept, in contrast to its use by many biogeogra-
phers to refer to groups of taxa that share not only
common distributions but also a (presumed) common
origin and migratory, even evolutionary, history. In-
dividualistic behaviour of taxa in time and space over
the scales of interest in biogeography (e.g. Huntley &
Birks 1983) appears to be the norm rather than the
exception, and shows the importance of discarding
historical connotations in the biotic-element concept
(Feegri 1963).

The alternative type of analysis considers biotic
affinities between geographical areas, so-called Q-

mode analysis, with its emphasis on assessing simi-
larities between areas and delimiting biotic regions
(Simberloff & Connor 1979, Connor 1987a). Results
of R- and Q-mode analyses can usefully be combined
to provide insights into the structure of the original
distributional data (e.g. Proctor 1967, Birks 1976,
Williams 1982).

Although it is clear when perusing distribution
maps that some distribution patterns recur and thus
that some taxa have broadly similar distributions and
belong in the same element, problems commonly
arise in trying to delimit elements visually. These in-
clude (1) the tendency to detect groupings even when
none are present, (2) the tendency to select certain
distributions as “types” and to group other maps
around them, and (3) the tendency to bias subcon-
sciously the groupings because of preconceptions
about possible causative factors (Jardine 1972, Birks
1976). Moreover, it is extremely difficult, if not im-
possible, to detect biotic regions visually because the
primary source of biogeographical data is arranged by
taxon, namely distribution maps, whereas biotic
regions require distributional data arranged by area.
Some form of “mental overlaying” of taxon maps is
thus required to detect areas with similar biotas. This
is clearly impossible if there are more than a few taxa.

Using numerical techniques to derive elements or
regions overcomes many of these problems. Nume-
rically defined elements or regions are defined solely’
on the basis of the original data matrix without any
preconceptions about causative factors, and thus
avoid any subconscious bias and problems of the ty-
pological approach. Quantitative techniques, given the
same data and algorithm, produce consistent, re-
peatable results. Moreover, they force us to be ex-
plicit about aims, assumptions, and methods and re-
quire data sets to be constructed in a uniform way
based on a standard taxonomy (Birks 1976). _

It is important to emphasise that numerical met-
hods make no claim to be objective (Gordon 1981,
Birks & Gordon 1985). Many subjective decisions
have to be made prior to any numerical analysis.
However, once these decisions are made, the results
are repeatable. No numerical analysis should become
an end in itself; it is a means to an end. The use of
each analysis should be carefully evaluated and its
value assessed to obtain maximum efficiency in data-
handling. It is the interpretation of the results that is
the important but difficult part of quantitative bio-
geography. No amount of computing, however skil-
ful, can compensate for a first-hand knowledge of the
biogeography and ecology of the taxa concerned.
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3. Numerical analysis of distributional
affinities between taxa (R-mode analysis)

Ten stages in the numerical analysis of biogeo-
graphical data in terms of delimiting biotic elements
can be distinguished (Fig. 1).

3.1. Definition of initial aims and interests

As in any scientific study, it is necessary to define
clearly at the outset the aims and interests of the study
and its geographical and temporal scales. Such an aim
might, for example, be the delimitation of biotic
elements within the ant fauna of Europe based on
available distribution maps for Europe.

3.2. Delimitation of geographical units and their
scale within the region of interest

This stage involves two parts — (1) seleciion of
the type of geographical units to be used for data
compilation, and (2) definition of the appropriate
scale of the geographical units.

Arbitrary areas within the region of interest can be
used, such as countries, counties, latitude/longitude
blocks of equal size, individual 50x50 km squares of
UTM grid maps, etc. These units should be selected
strictly on geographical criteria only, without consid-
eration of ecological or biological factors, to avoid
any circular reasoning (Jardine 1976).

Problems of defining the appropriate scale of the
geographical units can arise (Jardine 1976). If the ar-
eas are very large, the resulting patterns and biotic el-
ements will be correspondingly broad, whereas if the
areas are very small, problems of uneven recording
can influence, to a disproportionate extent, the final
groupings and may even fail to reveal the major
underlying patterns because of a high “noise” to
“signal” ratio in the data.

There is no guarantee that elements delimited from
a data set using small areas will be similar to those
detected when larger areas are used. Phipps & Cullen
(1976) obtained very different results for 32 Papaver
species in Turkey when 50x50, 100x100, and
200%x200 km grids were used. Hengeveld &
Hogeweg (1979) compared carabid elements at two
geographical scales, The Netherlands and Europe,
using 10x10 and 500x500 km grids, respectively.
They showed that patterns for Dutch carabids at these
two scales are different but not independent. At the

Define aims
and interests (3.1)

Define geographical
units and scales (3.2)

Select taxa (3.3)

Compile data matrix (3.4)

‘

Calculate matrix of
proximity measures (3.5)

Represent patterns within
proximity matrix (3.6)

Scaling methods Partitioning methods

'

Choice of
clustering criterion (3.7)

Choice of
scaling criterion

Display of results (3.8)
Tests for distortion (3.9)
Evaluate results (3.10)

Biogeographical interpretations
and hypothesis-generation

Fig. 1. Stages in the numerical analysis of biogeographical
data. The numbers refer to sections in the paper where the
particular stage is discussed.

scale of The Netherlands the resulting elements are
primarily habitat-related, whereas at the broader Eu-
ropean scale they are more closely linked to macro-
climate.

Choice of scale of geographical units within the
region of interest is thus a critical decision. The
“bestblock” method (Phipps 1975) is useful for esti-
mating an optimal scale, defined as the one that
maximises the number of matches in +/— comparisons
over all pairwise comparisons. Although bestblock is
not perfect, it helps to make scale selection less
arbitrary than otherwise.

3.3. Selection of taxa

The basis of any biogeographical analysis is an
adequate taxonomy. It is important that the taxonomic
treatment of the group in question should be as uni-
form as possible between taxa and between areas.
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Clearly it is essential to avoid comparing taxa in one
area delimited by taxonomic “splitters” with taxa in
another area defined by “lumpers”. When analysing
biogeographical data from a large region (e.g. conti-
nental scale), such taxonomic problems are difficult to
avoid unless there is a standardised taxonomic
treatment for the whole region.

Further taxonomic problems can arise in analyses
based on native taxa only, as all records of intro-
ductions should be correctly evaluated and eliminated
(Jardine 1972). In order to avoid bias, all taxa in the
group of interest occurring in the region should be
included and given equal weight in the numerical
analysis. If the data set is large, it can be usefully
subdivided randomly, and the patterns detected in one
subset tested against the patterns in the other subset.

3.4. Compilation of data matrix

This involves tabulating occurrences of taxa in the
areas within the geographical region. For discrete lo-
calities (e.g. islands), each island is a recording unit
and distribution data can be extracted from literature
and collections, and tabulated (Connor 1987b). For
areas within a land-mass it is more difficult to compile
such data. The commonest way, after selecting the
recording areas, is to draw them on to transparent
film, overlay this on distribution maps, and tabulate
the data (e.g. Birks 1976). This is time-consuming
and often difficult, particularly if the maps are drawn
to different scales or projections. The data, once ex-
tracted, cannot be converted to different grid sizes for
calculating bestblock estimates or elucidating effects
of different scales. Connor (1987b) describes auto-
mated digitizing of distributional maps that overcomes
many of these problems.

The reliability of all subsequent analysis depends
on how complete and reliable the data matrix is. A
further assumption is that +/— data are adequate (cf.
Thaler & Plowright 1973). In some instances, taxon
abundance within individual areas is available, for
example as bird-census data (Bock et al. 1978, Jarvi-
nen & Viisdnen 1980), proportion of area occupied
(Kaiser et al. 1972), or number of smaller grid-
squares occupied within the recording area.

3.5. Calculation of matrix of proximity measures

The calculation of proximity or distance measures
between all pairs of objects of interest, in this case

taxa, is the first part, explicitly or implicitly, or almost
all multivariate data-analytical techniques. It is most
useful to consider distance or dissimilarity
(complement of similarities) coefficients, dl-j where
d;; is the dissimilarity between objects i and j, because
distances can be used to represent geometrically the
matrix of proximity measures between pairs of taxa.
As all subsequent numerical analysis is based on such
a matrix rather than on the original data matrix, it is
essential that the distances accurately reflect the
original data. Great care is therefore needed in
selecting appropriate measures (Gordon 1981).

A large number (ca. 60) of proximity measures
exists for binary +/— data (e.g. Cheetham & Hazel
1969, Lamont & Grant 1979, Gower 1985), several
of which are very similar or even synonyms, whereas
others do not obey the basic mathematical re-
quirements for a symmetric proximity measure. Many
coefficients include a term for joint absences of
variables (e.g. simple matching and Rogers & Tani-
moto indices — see Gower 1985). In biogeography,
such co-absences convey little useful information and
there is no reason why, when comparing distribution
of taxa, the areas where neither taxon occurred should
contribute to the proximity measure (cf. Baroni-
Urbani & Buser 1976).

Hubalek (1982) presents a useful analysis of 43
coefficients in terms of admissible theoretical criteria
and concludes that the Jaccard, Kulczynski, Dice-
Sgrensen, and Driver-Kroeber-Ochiai similarity mea-
sures and their dissimilarity complements “generally
work well”. Another useful coefficient is Baroni-
Urbani & Buser’s (1976) measure, but unlike the
others recommended by Hubalek this incorporates, to
a small degree, joint absences. Hubalek concludes
that “three or so alternative coefficients should be
used and the results compared; moreover significance
tests should be carried out whenever possible”.

In the case of the Jaccard and Baroni-Urbani &
Buser coefficients, something is known of their sta-
tistical properties (see Baroni-Urbani & Buser 1976,
Hendrickson 1979, Baroni-Urbani 1980) and the ap-
proximate statistical significance of observed values
can be evaluated at a given probability level (see
Johnson & Millie 1982, Rice & Belland 1982,
Strauss 1982 for other evaluation aproaches for
proximity measures). In general all these measures
are descriptive in character and are acceptable for de-
scriptive exploratory data-analysis. Probabilistic
measures for R-mode (taxon x taxon) analysis are
rare. Williams (1944) proposed such an index
(number of taxa present in two areas / number of taxa
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expected from a species-area curve if the areas were
random, independent samples of the same homo-
geneous region). This is an R-mode analogue to the
probabilistic coefficient for Q-mode analysis of Con-
nor & Simberloff (1978), Simberloff (1978), and
Raup & Crick (1979).

3.6. Representation of patterns within the distance
matrix

There are two general approaches for representing
such patterns: (1) to display the objects, in this case
taxa, as points in low-dimensional space (usually 2 or
3 dimensions) so that objects that are similar to each
other in the distance matrix are represented by points
close together, so-called ordination or scaling (e.g.
Gower & Digby 1981, Gordon 1981, Everitt 1978,
Everitt & Dunn 1983, Jambu & Lebeaux 1983), and
(2) to impose a partition on the data, dividing the
objects into g disjoint groups so as to optimise some
stated mathematical criterion, so-called partitioning or
numerical classification (e.g. Everitt 1980, Gordon
1981, Jambu & Lebeaux 1983). Although both
approaches can be useful in biogeography (e.g.
Proctor 1967, Holloway & Jardine 1968, Birks
1976, Baroni-Urbani & Collingwood 1977), for
descriptive purposes partitioning results are most
relevant.

In partitioning techniques the number of groups,
g, is unknown at the outset. In theory, optimal parti-
tions are sought for different values of g, and the re-
sults assessed. There are very many ways of parti-
tioning n objects into g groups. However, current
programming techniques are such that it is not com-
putationally feasible to identify with certainty the par-
tition that is globally optimal with respect to a par-
ticular clustering criterion. Approximating algorithms
thus have to be used. These fall into two main types.
(1) Agglomerative algorithms where initially there are
n groups, each with one object. At each cycle, pairs
of groups are amalgamated that are most similar in
terms of the clustering criterion used, thereby
producing a hierarchically nested set of partitions. A
generalised agglomerative algorithm (Wishart 1969)
exists for single-link, complete-link, group-average
(weighted and unweighted), median, centroid,
minimum-variance (sum-of-squares), and flexible
clustering, thereby making computer implementation
of all these methods easy. Such an agglomerative
algorithm is, however, only an approximation to the
optimal partion into g groups with respect to a

particular clustering criterion. Moreover, it imposes
an hierarchy on the set of partitions (e.g. the partition
into 3 groups must be nested within the 2-group
partition). This structure may be unwarrented for
many biogeographical data sets (Van Ness 1973). (2)
Iterative relocation procedures in which an initial
partition into g groups is modified by relocating ob-
jects from one group to another in an attempt to im-
prove on a clustering statistic. The procedure contin-
ues until no further improvement occurs, although
even then there is no guarantee that the mathematically
optimal solution has been obtained. It is com-
putationally extremely time consuming, as it must be
repeated for different initial configurations and differ-
ent values of g (see Everitt 1980, Gordon 1981 for
further details). With large data sets, such as occur in
biogeography, the computing demands for iterative
relocation procedures become so great that they are
not yet computationally feasible for all but the
smallest data sets.

Gordon & Henderson (1977) present a parti-
cularly useful hybrid algorithm that represents a
compromise between computational demands and
mathematical optimality. It invariably produces par-
titionings with lower total within-group sum-of-
squares than its agglomerative counterpart, it does not
impose a hierarchically nested classification, and it is
computationally fast. It warrents wider use in
biogeography.

3.7. Choice of clustering criterion

Very many partitioning procedures, all using dif-
ferent clustering criteria, exist (e.g. Cormack 1971,
Everitt 1980, Gordon 1981, Jambu & Lebeaux 1983)
and the problem facing biogeographers is to decide
what procedure to use. It is important to be aware of
the difficulties in selection, as they highlight the lim-
itations of numerical classificatory procedures. Each
method is well-suited to revealing particular types of
data structure. For example, single-link clustering
detects groups of any shape as long as they are well
separated whereas minimum-variance clustering de-
tects compact, spherical-shaped clusters (Gordon
1981). Very different partitions can result depending
on the method used (e.g. Everitt 1980). If the struc-
ture of the data was known in advance, an appropriate
partitioning method could then be selected to display
this structure. The circularity is now clear. The
structure is nor known in advance, and partitioning
methods are being used to discover what structure
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there is within the data. This is, after all, the function
of exploratory data analysis! The problem of which
clustering criterion to use is thus critical but unre-
solved (see Gordon 1981).

Attempts have been made to evaluate different
methods by simulation studies using data-sets with
known structure (e.g. Cunningham & Ogilvie 1972,
Blashfield 1976, Milligan 1981). In general, there is
no “best” method for all data sets. Single-link is
nearly always the least successful, whereas group-
average and minimum-variance generally provide
useful results.

The recommended approach at present, given ex-
isting theoretical understanding of different clustering
criteria, is to use several methods on the same data
set. If similar results emerge, one can have more
confidence that the groups have some reality and are
not simply artifacts of any one metiiod (Gordon
1981).

3.8. Display of partitioning results

There are various ways of representing numerical
classification results (see Everitt 1978, 1980, Gower
& Digby 1981). (1) Dendrograms or binary trees can
be constructed to show the hierarchical merging of
objects. This is only possible for hierarchical me-
thods, using either an agglomerative or divisive algo-
rithm (e.g. two-way indicator species analysis (Hill
1979) or polythetic divisions (Lefkovitch 1974)). (2)
Dissimilarity-matrix shading (Ling 1973) involves re-
ordering the original distance matrix into the object
order suggested by the classificatory results, either
from hierarchical or iterative relocation analysis, and
shading the matrix in terms of the dissimilarity
values. (3) Two-way matrix analysis (Birks 1976)
requires partitioning both the taxa (R-mode) and areas
(Q-mode) separately, re-ordering the data matrix in
taxon and area order, and quantifying the
concentration of elements for each taxon-area
partition. It can be used with any partitioning pro-
cedure. Biogeographical examples include Proctor
(1967) and Birks (1976). (4) Mapping the distri-
bution of elements in terms of numbers of taxa
occurring in each geographical area within the region
of interest. Each element requires a map (e.g. Proctor
1967, Birks 1976, Baroni-Urbani & Collingwood
1976, 1977).

Methods (3) and (4) require the partitioning level
and hence the number of groups (elements) to be de-
cided before the results can be displayed. This raises

the critical question of how many groups. I return to
this question when considering the evaluation of the
results.

3.9. Tests for distortions

This stage is rarely done, even though it is an es-
sential step. Hierarchical partitioning procedures can
be ‘regarded as a transformation that converts the
original distances between pairs of objects into new
distances represented by the lowest level two objects
belong to the same group in a dendrogram (Gordon
1981). Inevitably such a transformation introduces
distortions. A variety of distortion measures is avail-
able (see Cormack 1971). The most widely used is
Sokal & Rohlf’s (1962) cophenetic correlation which
is simply the product-moment correlation coefficient
between the original and new distances for all
n(n—1)/2 pairwise comparisons.

3.10. Evaluation of results

As Green (1979) warned about exploratory mul-
tivariate data analysis, “such techniques yield results
that give the appearance of things going on even
when applied to data simulated to be completely ran-
dom... It is a wise precaution to test “nothing is going
on” (as a null hypothesis) first”. It is thus essential to
evaluate all partitioning results critically. Current
approaches are reviewed by Dubes & Jain (1979),
Gordon (1981), and Milligan & Cooper (1985). Four
important questions in evaluation are (1) is the data
matrix random and is structure being imposed on
unstructured data, (2) how well does a hierarchical
nesting fit the original data, (3) which groups are
valid statistically, and (4) how many groups should
be recognised?

An answer to question (1) can be obtained by
randomisation procedures (e.g. Harper 1978, Strauss
1982). Random (null) incidence matrices are generat-
ed within the constraints of constant row and column
totals. Such constraints retain the biotic richness of
areas and the frequencies of different taxa. These
matrices are then subjected to cluster analysis, and the
process continued many times. Any group is deemed
statistically significant if its node value in a
dendrogram exceeds the (1-o) percentile (where o
may be set conventionally at 0.05) for, say 100 sim-
ulations. Strauss (1982) analysed distributions pat-
terns of 43 fish species in a Pennsylvanian river and
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showed that only 7 of 12 groups were significant.
This type of approach has considerable potential, as it
represents an attempt to link exploratory and confir-
matory data analysis and to put numerical classifica-
tion on a more rigorous, statistical basis (see Birks
1985).

Cophenetic correlations and other distortion mea-
sures (see section 3.9) provide means of answering
question (2). Answers to question (3) require either
the “brute-force” randomisation approach (e.g. Har-
per 1978, Strauss 1982) or specific statistical tests,
often with critical assumptions (e.g. Sneath 1977a,
1977b, 1977c, 1979a, 1979b). These tests commonly
assume multivariate normality within groups and
involve a multivariate extension of #-tests to test for
group-overlap in multidimensional space. Sneath
(1986) has developed a test for group multivariate-
normality. Athough this approach is still under de-
velopment, it is an area of considerable potential im-
portance in answering the question which groups are
valid statistically.

It is difficult to answer question (4) (how many
groups should be recognised?) on mathematical
grounds alone (Orford 1976). To answer it requires
looking into the multidimensional space of the origi-
nal data to see which groups are “real”. This cannot
be done directly. An indirect approach involves An-
drews’ (1972) multidimensional plots of individual
objects, in this case taxa. The +/— data matrix can
readily be transformed into quantitative co-ordinates
within multidimensional space by means of Gower’s
(1967) principal co-ordinates analysis with an appro-
priate proximity measure. The co-ordinate scores for
each object for all dimensions can then be mapped
into a Fourier function and this transformation drawn
from —7 to . Each object is represented by a wave
across the plot (e.g. Everitt 1978, Birks 1978). Taxa
with similar distributions will have similar waves po-
sitioned close together. The partitioning results can be
evaluated by means of these plots, and the number of
useful groups with coherent patterns within them and
of “rag-bag” objects with unique patterns can be
decided (Everitt 1978).

Another potentially useful approach is to map out
the distribution of elements for 2,3,4,... groups, and
look for spatial coherence in the results, for example
spatial autocorrelation for different partitioning levels
(Wartenberg 1985). Wartenberg re-analysed the mo-
dern foraminifer data of Imbrie & Kipp (1971) who
had considered 3 or 4 elements only. Spatial auto-
correlation of the mapped groups show significant
positive autocorrelations for 7 groups, implying 7 el-

ements with geographically coherent patterns. This
provides a guide to what elements warrant further
interpretation. Ther is considerable potential for using
other numerical techniques for spatial data analysis in
quantitative biogeography (e.g. CIliff et al. 1975,
Unwin 1981, Upton & Fingleton 1985).

3.11. Examples

Instructive and useful examples of the use of nu-
merical partitioning techniques to delimit biotic ele-
ments include the analysis of British hepatics (Proctor
1967), ferns (Birks & Line unpublished), and ants
(Baroni-Urbani & Collingwood 1976), European
ferns (Birks 1976), Australian plants (Bridgewater
1976) and birds (Kikkawa & Pearse 1969), Indo-
Australian birds, bats, and butterflies (Holloway &
Jardine 1968, Holloway 1973), and Florida trees
(Birks unpublished).

4. Numerical analysis of biotic affinities
between geographical areas (Q-mode analy-
sis)

Here the analysis is very similar to studying dis-
tributional affinities between taxa, except that now the
analysis is Q-mode and the aim is to group the n areas
on the basis of similar biotic composition. When the
biotic regions are mapped, biogeographical
regionalisation of the region of interest can be estab-
lished (see Table 1 on page 172 for examples).

5. Future developments

There are at least four major areas where future
developments could usefully take place.

5.1. Biogeographical regionalisation and compari-
son of classifications

With an increasing interest in quantitative de-
scriptive biogeography and the compilation of large
and comprehensive data-sets for different groups of
organisms for the same region, it is important to
compare biogeographical regionalisations based on
different organisms, e.g. plants, birds, mammals,

. ants, and carabids in northern Europe. If comparable

analyses (not necessarily using identical geographical
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Table 1. Examples of biogeographical regionalisation based on
numerical analysis of biotic affinities between areas.

Geographical area

Taxonomic group Author

British Isles
Flowering plants
Hepatics & mosses
Ferns Birks & Line unpub.
Bumblebees pre-1960  Williams 1982
Bumblebees post-1960 Williams 1982

Birks & Deacon 1973
Proctor 1967

Finland
Birds Jarvinen & Viisénen 1980
Northern Europe
Ants Baroni-Urbani & Collingwood 1977
Europe
Ferns Birks 1976
Nematodes Topham & Alphey 1985
Atlantic Ocean
Seaweeds Lawson 1978

van der Hoek 1975

Holarctic zone

Psylloidea Hodkinson 1980
Florida
Trees Birks unpub.

Indo-Australia
Birds Holloway & Jardine 1968
Bats Holloway & Jardine 1968

Butterflies Holloway & Jardine 1968
World

Conifers Sneath 1967

Birks unpub.
Red seaweeds van der Hoek 1984

Joosten & van der Hoek 1984
Freshwater crustacea Sneath & McKenzie 1973
Brachiopods Waterhouse & Bonham-Carter 1975
Trilobites Jell 1974
Insect pests Ezcurra et al. 1978
Collembola Blackith & Blackith 1975
Mammals Smith 1983

Flessa 1981

areas but of a similar scale) existed for these groups,
the regionalisation map for, say, ants could be grid-
ded, and the regions recorded that particular grid
points (ca. 200 total) lay in. The process is repeated
for plants, birds, etc. The different geographical clas-
sifications can then be compared pair-wise and
quantitatively using Rand’s (1971) coefficient of
agreement. The matrix of Rand coefficients (0 totally
dissimilar, 1 identical) can be partitioned or ordinated
numerically to detect similar and dissimilar classi-
fications, the grouping of which may have interesting
biological interpretations. A preliminary comparison

of quantitative regionalisations of the British Isles for
flowering plants, bryophytes, ferns, birds, ants,
butterflies, and bumblebees indicates a major di-
chotomy between plant and animal regionalisation
patterns, with the former having strong north-south
and west-east gradients and the latter having marked
north-south gradients only (Birks unpublished).

5.2. Development and use of spatially constrained
partitionings

In analysing biogeographical data from continental
land-areas, the geographical areas are not random,
unconnected areas. They have a specific geographical
location and geographical relationship with other
areas. In view of this important geographical
information, it is appropriate to impose some
constraints on allowable groupings of areas based on
their spatial relationships. This is relatively
striaghtforward for linear geographical (e.g. McCoy
et al. 1986, Webster 1980, Hawkins & ten Krooden
1979) and temporal gradients (e.g. Birks & Gordon
1985, Legendre et al. 1985). It is more difficult for
two-dimensional geographical data. Deriving suitable
algorithms for geographically constrained partitio-
nings is currently an area of active research. Recent
contributions include Perruchet (1979, 1983) and
Gordon & Finden (1985). A review of existing ap-
proaches is.given by Gordon & Finden (1985). More
research is needed, however, before there are robust
and computationally feasible algorithms for spatially
constrained partitioning that can analyse large bio-
geographical data sets.

5.3. Statistical developments

Much of what I have discussed above falls within
Tukey’s (1980) exploratory data analysis and Ball’s
(1975) descriptive phase in biogeography, and is de-
signed to answer the question “what biogeographical
regions or elements are there in the area of interest?”
Hopefully, we can begin to answer the question
Connor (1980) raised in reviewing Pielou (1979),
namely “are there biogeographic regions™? Answers
to this type of question require hypothesis testing and
probabilistic statistics, and hence confirmatory data
analysis. An appropriate null hypothesis is that there
are no biotic regions (or elements) within the area of
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interest and that the observed similarities between re-
gions (or taxa) do not differ from random expectation
if the regions supported random, independent subsets
of the “taxon pool” for the area as a whole.

Many existing proximity measures are non-statis-
tical, sample-size dependent, and ad hoc. With the
exception of the Jaccard and Baroni-Urbani & Buser
coefficients, it is not possible, for example, to test for
significant deviation from randomness for observed
pair-wise comparisons (Simberloff et al. 1981, Mc-
Coy & Heck 1987). In comparing areas (Q-mode
analysis), it is important to test whether observed
similarities between areas do differ from expectation
if the two areas had random and independent subsets
of a “taxon pool” (Simberloff 1978, Connor & Sim-
berloff 1978, Simberloff et al. 1981). By comparing
observed number of taxa with expected number on
the basis of random, independent subsets, Connor &
Simberloff (1978) and Simberloff & Connor (1979)
devised a useful probabilistic similarity measure for
Q-mode analysis, along with its variance (Simberloff
1983) (see Wright & Biehl 1982 and Simberloff &
Connor 1984 for further discussion and Raup &
Crick 1979 for a related measure). Heck & McCoy
(1987) discuss the Raup & Crick coefficient and il-
lustrate problems in using it (and other related proba-
bilistic coefficients) that arise from the difficulties of
defining realistic taxon pools.

These measures can, after appropriate scaling, be
used in numerical partitioning and non-metric scaling
methods to analyse biotic similarities between islands
in Scotland (Birks, Kerslake & Line unpublished).
Raup & Crick (1979) and Crick (1980) display pat-
terns within matrices of their probabilistic measures
for echinoid distributions using non-metric scaling.
Other biogeographical uses of these measures include
McCoy et al. (1986) and McCoy & Heck (1987).

Independently, Wong and Hansell (1983) have
incorporated a related probabilistic measure based on
the hypergeometric distribution into a clustering
method. Similarities between two objects fused to-
gether can only have variables consistent with a ran-
dom, independent allocation model, and with a taxon
pool explicitly defined for each cluster level. Within a
given data-set not all objects may be grouped together
because they are too dissimilar to fit a single-pool
random model, suggesting that the data structure is
not hierarchical and not consistent with a single tax-
on-pool (see Wong & Hansell 1983 for further de-
tails). This method has considerable potential in ana-
lytical biogeography.

Related attempts at deriving similarity measures
with known probabilistic properties include Hender-
son & Heron (1977) and Grassle & Smith (1976).
Approximate probability distributions for other coef-
ficients can be derived by repeated randomisations
(e.g. Rice & Belland 1982, Strauss 1982) and boot-
strap and jackknife techniques (e.g. Smith et al.
1979, Smith 1985, Smith et al. 1986, Gilinsky &
Bambach 1986). Useful introductions to the powerful
techniques of randomisation, bootstrapping, and
jackknifing include Edgington (1980), Efron (1975),
Efron and Gong (1983), and Diaconis and Efron
(1983). These techniques are designed to estimate
standard errors of a test statistic or its probability
distribution, and clearly have considerable potential
for statistical developments in analytical and historical
biogeography (e.g. Gilinsky & Bambach 1986,
Connor 1986).

In the field of numerical classification, there is in-
creasing interest and activity in the statistical evalu-
ation of partitioning results — “it seems likely that the
future will see further investigations of the links
between classification and more formal statistical
methodology. Such studies could provide a deeper
understanding of the properties of various classifica-
tion procedures and facilitate a more informed ap-
proach to the analysis of multivariate data” (Gordon
1981:53). A potentially important probabilistic parti-
tioning technique for biogeographical data is Buser
and Baroni-Urbani’s (1982) method based on gener-
alised homogeneity. The current state-of-the-art in
numerical partitioning and its links with confirmatory
and statistical data analysis is presented by Aldender-
fer and Blashfield (1984) and Milligan and Cooper
(1985). Linking statistical aspects of proximity mea-
sures and clustering (e.g. Wong & Hansell 1983) is
clearly an area of great importance for future devel-
opments in analytical biogeography.

5.4. Data extraction and compilation

Although more and more atlases of distribution
maps are being published, the extraction and compi-
lation of distributional data in a form for numerical
analysis remain a major problem. Nearly all such data
are extracted manually. There is clearly great scope
for automatic digitizing range limits and converting
mapped distributions into +/- data for individual taxa
from atlases (e.g. Beven et al. 1984, Connor 1987b).
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Developments in text-reading hardware may even al-
low dot grid-maps to be read directly by machine.

6. Conclusions

It is important to remember that any numerical
analysis can only be as good as the data on which it is
based. Reliable and complete biogeographical data
based on a sound, uniform taxonomy take many or-
ders of magnitude more time to collect than it takes a
computer to process the data. The biggest limitation in
numerical biogeography at present is not a lack of
computers or numerical techniques but a shortage of
suitable data sets. Good biogeographical data are thus
so valuable that any numerical analysis should be
done critically using appropriate and robust quant-
itative techniques, such as those discussed above.

This raises the question of which methods, among
the many now available, should be used. It is not
possible to make any firm recommendations about
which proximity measure, clustering criterion, or
evaluation procedure to use. I do not believe that there
is one all-purpose method that can be guaranteed to be
appropriate with all data sets. Several bad methods
have been proposed and used. Many methods are
almost equivalent in some situations. What is
recommended is that any numerical method used
should be selected for its mathematical suitability to
the biogeographical problem in hand and not simply
used because a computer program or package
implementing a particular method happens to be
available. As more is discovered about the mathe-
matical properties and inherent biases of particular
numerical methods, it will hopefully become possible
to select appropriate methods solely on theoretical
criteria.

Experience indicates that if the patterns in a given
data set are well-marked then they are usually detected

by most methods with only minor differences in detail
between methods. However, in some instances
different numerical analyses of the same data can lead
to very different conclusions and biological interpre-
tations (e.g. Everitt 1980, Buckland & Anderson
1984, Birks & Gordon 1985). It is therefore impor-
tant, in critical studies, to analyse the data using sev-
eral methods. If the results agree, one can have some
confidence in the reality of the biotic elements or re-
gions proposed, as they are unlikely to be an artifact
of the particular numerical method used. If the results
do not agree, other approaches to exploratory data
analysis such as scaling procedures and multivariate
plottings should be used (e.g. Everitt 1978, Gordon
1981), and all partitioning and scaling results evalu-
ated critically using randomisation procedures.

The early phase of numerical classification, parti-
cularly in numerical taxonomy and descriptive eco-
logy, saw the proliferation of a huge number of par-
titioning algorithms (e.g. Cormack 1971), with little
or no attention being paid to their biological assump-
tions or mathematical properties. In recent years,
mathematicians have begun to study these techniques
more critically and are attempting to relate their nu-
merical properties to more formal statistical proce-
dures (Gordon 1981). The adoption and critical use
of these mathematical developments into quantitative
biogeography is important and may help to unite the
descriptive and analytical approaches in biogeogra-

phy.
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