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The population density of a species in space usually is highest near the center of its
geographic range and declines with increasing distance away from the center. Since a large
number of biotic and abiotic factors may act simultaneously to limit local densities of
species populations, rather than trying to identify these, we focus o the general processes by
which environmental factors affect population density. Four processes determine the rate
of population change: birth, death, immigration, and emigration. These are functions of
both space (density independent factors) and population size (density dependent factors).
Death and emigration should be increasing functions of population density. Birth rate
should increase with population density up to a point, then begin to decrease. Immigration
should decrease with increases in density. Birth and immigration sum to a net rate of
population gain and death emigration sum to a net rate of population loss. These two
functions intersect to give a stable equilibrium point. The set of equilibrium points of
populations in space determines the general pattern of population abundance in space. In
order for population density to be a nonincreasing function of the distance from the
geographic center, either population gain rate must be a nonincreasing function of distance
from the geographic center and population density, or population loss rate must be a
nondecreasing function of distance from the geographic center and population size, or both
must occur.
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1. Introduction

A major activity in ecology has been to attempt to
identify the factors that limit local population densi-
ties and geographic distributions of species. This has
proven to be extremely difficult, because even for a
single species many variables are probably important,
and often these are not independent either in their ef-
fects on organisms, or in their pattern of spatial vari-
ation. Recently, multivariate statistical methods have
been used to identify complex combinations of vari-
ables that appear to account for some spatial variation
in population density (e.g. for plants: Kercher &
Goldstein 1977, Strahler 1978; for invertebrates:
Green 1971, 1974; for birds: Whitmore 1975, 1977,

Rotenberry & Wiens 1980; Noon 1981; Collins et al.
1982; for mammals: Crowell & Pimm 1976;
M’Closkey 1976; Dueser & Shugart 1978, 1979).
These analyses assume linear responses of organisms
to environmental variables, or at least that population
responses can be approximated adequately by linear
statistics (see review papers in Capen 1981). West-
man (1980) has been able to test for curvilinear rela-
tionships by fitting Guassian curves to species pop-
ulation densities along environmental gradients. Re-
gardless of the statistical approach, one problem
common to all of these studies is that they seemingly
fail to yield satisfying general principles. By defini-
tion each species and higher taxon is unique and its
abundance and distribution are limited by different
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combinations of abiotic factors and biotic interac-
tions. Consequently, the greater the precision with
which these factors are enumerated and their complex
interacting effects are elucidated, the less the ability
to extrapolate the results to other taxa or even to addi-
tional populations of the same species.

An alternative approach to examining in detail the
relationships between individual species and their en-
vironments (biotic and abiotic) is to search for and
attempt to explain general statistical patterns that
characterize the variation of local population density
of many species over transects or gradients in geo-
graphic space (Hengeveld & Haeck 1981, Brown
1984). This procedure has the advantage of elucidat-
ing large scale patterns that cannot be described by
studying small collections of local sites.

Species are not equally abundant throughout their
ranges; rather, there is a general tendency for popula-
tion density to be highest near the center of the geo-
graphic range and to decline relatively gradually and
often symmetrically toward the boundaries (Whit-
taker 1961, Westman 1980, Hengeveld & Haeck
1982). Brown (1984) has proposed the following
explanation for this pattern. The local population
densities of species are affected by many biotic and
abiotic variables that comprise the multiple dimen-
sions of the Hutchinsonian (1957) niche. For any
widespread species, the relative importance of these
different factors varies from site to site over the geo-
graphic range. When all factors are considered, the
pattern of spatial variation in environmental condi-
tions tends to be autocorrelated so that nearby sites
tend to have more similar combinations of variables
than distant ones. Those places that offer the most
favorable conditions support the highest population
densities, and these will tend to be clustered together.
With increasing distance away from the most favo-
rable sites in any direction, one or more variables will
become less favorable and lead to decreasing popula-
tion densities. If the number of effectively independ-
ent limiting factors is reasonably large, and if envi-
ronmental variation in those factors is reasonably
gradual, the spatial distribution of population density
along any transect which runs through the center of
the species’ range will tend to resemble a normal, or
bell-shaped, curve (Brown 1984; see also Ramensky
1924, Whittaker 1967, Westman 1980). Brown’s
(1984) model applies only to species with a unimodal
pattern of abundance in space. Obviously, species
abundance patterns which are not unimodal violate
one or more of these conditions. We do not consider
such patterns here.

The present paper provides a mechanistic model
that develops the relationship between the demo-
graphic processes (birth, death, immigration, and
emigration) that determine local population density
and spatial variation in the environment which results
in geographic variation of abundance. We begin by
considering the processes limiting the density of a
single, local population, and then in later sections in-
vestigate how these processes vary among collections
of spatially distinct populations.

2. Regulation of local population density

‘The dynamics of a single local population may be
viewed as a change in density over time, dN/dt. There
are four processes that together determine this rate.
Positive increments, or gains, result from births and
immigration, while decreases, or losses, whill be due
to death and emigration. A simple representation of
this is

dN

T=(b +i)—(d +e),

=g—l,

where b, i, d, and e are the rates of birth, immigration,
death, and emigration, g is the rate of gain and / is the
rate of loss. Inreal populations, the gain and loss rates
will have both density dependent and density inde-
pendent components. Density dependent factors may
be viewed as making the functions, b, i, d, and e
functions of N. Density independent factors result
from environmental variation in space and time, al-
though only spatial variation is considered here.
Consequently, b, i, d, and e also be functions of space.
Let X represent space, then

%:b(N,X)H(N,X)—d(N,X)
—e(N X),
=g (N, X)=I(N, X). (0

The demographic significance of Eq. 1 is that the
functions b, i, d, and e integrate information from a
multivariate vector of environmental factors (where
population density is also considered a factor) into a
single population response.

In the rest of this section we will assume that X is
fixed, and hence that dN/dt is a function only of
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Fig. 1. General forms of functions relating birth rate (b), im-
migration rate (i), death rate (d), and emigration rate (e) to pop-
ulation density (V). The dashed lines indicate sums of birth and
immigration rates (g) and death and emigration rates (/). The
intersection of the population gain function (g) and the popula-
tion loss function (/) determines the equilibrial density N).

population density. In a later section we will examine
the situation where X is allowed to vary. We may infer
something about the general shape of b, i, d, and e
from the general properties of these processes. Given
a fixed number of potential immigrants, the rate of
immigration should decrease with increasing popula-
tion density. We have shown i as a convex downward
function in Fig. 1, but it may be concave without
affecting the argument below. The important feature
of this assumption is that population increases lead to
decreases in the rates of immigration into the popula-
tion (MacArthur & Wilson 1967). Reproduction or
birth rate in a population should increase as the popu-
lation density increases up to a point, at which, in
most populations, birth rate should begin to decrease
due to density dependent factors (e.g., increased
competition for limited resources, aggressive encoun-
ters, and susceptibility to predators and pathogens). In
Figure 1, we have represented b as a unimodal, sym-
metrical function, but neither the precise shape nor
the symetricity need be assumed. These two rates b
and i, will sum to a rate of gain, g, which is the
simplest case we assume to be a noincreasing func-
tion of population density. This assumption may be
relaxed by letting g be an increasing function of

population density when densities are low, and be-
coming nonincreasing for high population densities,
as would occur, for example, if immigration were
negligible. Both death and emigration rates should be
nondecreasing functions of population size. In fact, it
is reasonable to suspect that both of these functions
will be convex downward, since the change in death
rate (and perhaps also emigration rate) should in-
crease rapidly with population density as crowding
and intraspecific competition become severe. The
sum of these two functions should give a nondecreas-
ing loss function, which is zero when N=0.

The point at which the functions g and / intersect
is an attractor point at which recruitment into the
population equals losses from the population and
towards which population density moves. That is, if
we let N be the population density at which g =/, then
population densities larger than N will have negative
growth rates while those smaller will have positive
growth rates. We now investigate some implications
of these ideas.

2.1. Logistic growth

Pielou (1977) has shown that if the per capita gain
rate decreases linearly, while the per capita loss rate
increases linearly with N, then the logistic form of
population growth is obtained. That is, let

(1/N) ¢ =a1—b1N
(1/N) I =a2+b2N
then Eq. (1) becomes

dN
2 =N [@ may) @, +b)N]. @

Figure 2a shows the form of g and / under logistic
growth. There are two equilibrium points: N=0 and N
= (a,—a,)/ (b+b,). Reparameterizing Eq. (2) into the
form commonly seen in textbooks, we have r =
(a,—a,) and K = (a—a,)/ (b +b,).

We point out two features of the logistic here.
First, notice that an underlying assumption of the
logistic is that when N=0 the net rate of population
gain is zero (i.e., g is forced through the origin).
Hence, the logistic assumes no immigration is occur-
ring. Second, there are only two equilibrium points,
N=N and N=0. N=0 is unstable, hence any per-
turbations away from zero will always result in popu-
lation growth towards N.
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Now consider the more realistic situation of a
minimum population size below which reproduction
cannot occur. This may be represented by letting

g=a1N—-b1N2—c, 3)
where a, b, and c are all positive. Then the threshold
population is

- 4blc

which gives c as

2
—(2b)Ny-a))

4,

using Eq. (3), and setting g = / we can solve for the
equilibrium density:

4(b1 + bz)c

]

(C))

&=y t ‘\/(al —a2)2 -
) 2(bythy)

Since a, > a, (this condition assures positive per
capita population growth), in order to have two
positive N, ¢ must be greater than zero, which itis if 0
<N,<a,/b,. Thatis, if a threshold population level for
reproduction (N,) exists, then there will be two posi-
tive equilibrium densities. The lower equilibrium
point given by Equation (4) is unstable since for
values of N lower than the smaller equilibrium point,
dN/dt will be negative, and hence lead to extinction,
while values of N greater than the lower point will
cause N to grow towards the upper stable equilibrium
point (Fig. 2b). Notice also that the lower equilibrium
point will always be greater than N. Hence, a popula-
tion may be able to reproduce, yet fail to persists
because its gain rate is not high enough to overcome
the loss rate from the combined effects of mortality
and emigration.

2.2. Populations with low dispersal rates

In the preceding section it was pointed out that the
logistic equation assumes that immigration is zero.
For some populations this condition may be approxi-
mated. We explore this idea in a more general way
here. For a population with very low dispersal rates,
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Fig. 2. A. Gain and loss functions of the logistic equation of
population growth. Note that both g and / are parabolas. B.
Logistic gain and loss functions when a threshold density for
reproduction (V) exists. The gain and loss functions intersect 2
times. The lower equilibrium density (1\7 ) is unstable and the
higher (N ) is stable. Populations that have densities between N,
and 1\7 will have reproduction but maintain negative growth
rates and eventually go extinct.

changes in population- densities will be affected
mainly through reproduction and death; i.e., asiand e
approach zero, g and / approach b and d respectively.
It is then possible for two equilibrium points to occur,
since the recruitment function will be bowed upward
and intersect the loss function twice. This is likely to
occur, for example, whenever a cost rarity (Hopf &
Hopf 1985) imposes a minimum population size for
successful reproduction.

Populations inhabiting islands and insular habitats
are often special cases of populations with low disper-
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sal rates. Hence, insular species may have popula-
tions existing at or near unstable densities. Stochastic
fluctuations in the size of such populations may cause
them to drop below the critical density necessary to
maintain population growth.

Consider two populations of a species, one inhab-

iting an island and the other inhabiting the mainland.
The loss functions of the island and mainland both
pass through the origin, and from there they will tend
to diverge in proportion to the extent that the island
population has a reduced emigration rate. Thus, / , the
loss function of the mainland population will be
greater than [, the loss function of the island popula-
tion for all values of N, and / —/, will be an increasing
function of population density. Similarly, immigra-
tion will also be lower for island populations than
mainland populations, so g_ > g, and g —g, will be a
decreasing function of population size (Figure 3). We
can compare the equilibrium densities of the island
and mainland populations as follows. If [ -/, > g, —g in
the neighborhood of N then at N -we have =g,
I, < g.. Hence population growth of the island popula-
tion at the island density equivalent to N will be
positive, implying thatN >N (Fig. 3A). On the other
hand, if in the nelghborhood of N | -, < g —g,then
at N we have [ —g and [ > g. Thus the island
populatlon density equ1valcnt to N, will experience
negative growth andN < N, (Fig. 3B) Ifl -l.=g g,
at N then N N

Many observers have noted that island popula-
tions are often significantly denser than populations
in comparable habitats on nearby mainlands (e.g.
Crowell 1962, Grant 1966, Diamond 1970, Emlen
1978, 1979). Since islands usually have substantially
fewer species than mainlands, these differences in
population size often have been attributed to de-
creased interspecific competition on islands. The
phenomenon has been referred to as insular density
compensation (e.g. Crowell 1962, Diamond 1970,
1975). Other investigators have suggested that re-
duced predation pressure might explain high insular
population densities (R. Holt, pers. comm.). Emlen
(1979), however, argued that neither of these factors,
nor any general pattern in resource abundances could
account for higher densities of some land bird species
on islands in Baja California. He suggested that on
mainland sites there were “sink” habitats into which
individuals produced in favorable habitats were
forced by intraspecific interactions. Reproduction in
these sink habitats was less than recruitment. On
islands, such dispersal out of favorable habitats was
prevented, which lead to higher insular population
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Fig. 3. Comparison of population gain and loss functions of
island and mainland populations. Because rates of immigration
and emigration are lower on islands, gain and loss functions in
island populations must be lower than in mainland populations
in habitats of equivalent productivity. A. When the difference
between loss rates on islands and mainlands is greater than the
differences between gain rates, then island population density at
equilibrium (N ) will be greater than the corresponding mainland
equilibrium density (N ). B. When the difference between loss
rates on islands and mainlands is less than the difference be-
tween gain rates, then population density at equilibrium for the
island population (N ) will be less than the corresponding main-
land equilibrium density (N ).

densities. Our model formalizes this idea and extends
it. Any mechanism that causes a large reduction in the
population loss rate relative to the reduction in gain
rate on an island will result in higher island densities.
Picture, for example, island and mainland habitats
that are similar and highly productive. Immigration
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rates might be suspected to be much higher for the
mainland population, however, intraspecific competi-
tion and crowding should work to discourage immi-
grations. Mainland habitats which are highly produc-
tive should be constantly producing emigrants that
disperse to other areas. Thus, the major difference
between the island and mainland populations in this
situation would be the low emigration rate on the
island since the surrounding barrier would prevent
individuals from leaving. This interpretation is sup-
ported by the results of experiments with small mam-
mals. Krebs and his coworkers (Krebs et al. 1973)
constructed fences around populations, preventing
dispersal into and out of population enclosed in favo-
rable habitat. Substantially higher population densi-
ties were maintained inside the enclosures than on un-
fenced, control plots. Our model provides a single
parsimonious explanation for the high densities of
insular and enclosed populations that does not require
invoking particular biotic or abiotic mechanisms
other than straightforward effects of barriers to dis-
persal.

3. Variation in density among spatially separated
populations

In the previous section we argued that the gain and
loss function of a single population will intersect to
produce one or more equilibrium points. The pop-
ulation of an entire species can be viewed as a collec-
tion of many spatially distinct local populations, each
characterized by its own gain and loss functions and
equilibrium points. Differences in gain (or loss) func-
tions among local populations will be environ-
mentally determined, though gain and loss functions
of adjacent populations might be expected to be sim-
ilar since environmental variation is autocorrelated.
We noted in Eq. (1) that the functions b, /, d, and e
may be functions both of population density (V) and
of spatially varying environmental variables (sym-
bolized collectively by X). In this section we develop
this idea further and ask what are reasonable shapes
for g and / as functions of space and how do they in-
teract with local population densities to produce vari-
ations in population densities in space? In particular,
we are interested in how g and / may vary among local
populations to produce the unimodal, Gaussian-like
curve of species abundance in space which is so often
observed in nature.

Changes in the g and / functions in space can be
attributed to spatial variation in environmental factors
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Fig. 4. Spatial pattern of popuiation gains and losses can be
represented as surfaces in a three-dimensional coordinate sys-
tem composed of rate (the rates of population processes), space
(the spatial location of each individual population), and popula-
tion density. Each population existing at a given point in space
has a characteristic gain and loss function that intersects to give
an equilibrium density. Over space, the collection of equilibrium
points defined by the intersection of gain and loss functions de-
termines the relationship between space and population density
(projected on the density-space plane). In order for population
density to be unimodal in space when there is no spatial variation
in population gain functions, population loss functions must be
lowest for populations at the center of the spatial gradient and
increase in populations nearer to the periphery of the gradient.

that are independent of population size. Over their
geographic ranges, most species not only experience
significant variation in abiotic factors, such as tem-
perature and moisture, but also encounter varying bi-
otic conditions, such as different combinations of
competitors, mutualist, predator, and prey species in
different parts of the species range (Brown &Kurzius
1987). Species may respond to this variation in sev-
eral ways. Highly vagile species may maintain suffi-
ciently high immigration rates to balance lower repro-
ductive rates in poor habitats and thus maintain a
relatively constant gain rate in space. On the other
hand, poorly dispersing species may have reproduc-
tive rates that are relatively constant in space, and
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Fig. 5. In order for population density to be unimodal in space
when there is no spatial variation in population loss functions,
population gain function must be highest for populations at the
center of the spatial gradient. See the legend of Fig. 4 for a
description of gain and loss surfaces.

hence maintain relatively uniform recruitment rates
in space. For such species to achieve a bell-shaped
distribution in space their loss rate must increase
away from the central area of the species range (Fig.
4).

On the other hand species may have relatively
constant loss rates in space. For such species to main-
tain a bell-shaped distribution in space, it is necessary
for their gain rate to decline from the center toward
the edge of the range (Fig. 5). This may be achieved in
a number of ways. Species which have high dispersal
rates and hence high immigration rates must have
lower population birth rates in populations occupying
peripheral sites. On the other hand, poorly dispersing
species may have relatively constant birth rates, but
be unable to colonize or immigrate to peripheral sites,
thus leading to decreased immigration rates in periph-
eral populations.

In many species, populations in peripheral sites
may have both higher loss rates and lower recruitment
rates than central populations, which would again
lead to a bell-shaped distribution (Fig. 6). It is likely
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Fig. 6. If populations at the center of a spatial gradient have both
the highest rates of gain and lowest rates of loss, then equilib-
rium population densities will be highest at the center of the
gradient and decrease peripherally. See legend of Fig. 4 for a
description of gain and loss surfaces.

that most species fall into this category since factors
which affect reproduction (e.g. energy availability
and physiological stress) are also likely to influence
immigration, death and emigration rates. As environ-
mental favorability decreases, reproduction and im-
migration are likely to decrease while death and emi-
gration should generally increase.

In the above discussion it can be seen that there is
no need to require symmetricity in the changes in re-
cruitment and loss functions over space. From the
simplest considerations, we might expect that most
species will have asymmetrical spatial abundance
curves because the set of environmental factors which
operate to modify g and / are likely to be different in
different directions away from the center of the geo-
graphic range. On the other hand, species may tend to
evolve to mitigate the effects of the most severe
limiting factors, so that over evolutionary time there
may be a tendency for distribution to become more
symmetrical. Certainly many empirical data sets ap-
pear to exhibit symmetrical distributions (Brown
1984).
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The generality of these conclusions are not af-
fected by the particular functional form of g and / with
space and population density. While the particular
shape of the functions will influence the specific
shape of the population distribution over space, only
very general conditions on g and / need be met for the
spatial distribution function to be a nonincreasing
function of distance away from the geographic center
of a species. These conditions are: (i) Recruitment
(gain) must be a nonincreasing function of both dis-
tance from the geographic center and population den-
sity; or (ii) loss must be a nondecreasing function of
both distance from the geographic center and popula-
tion density; or (iii) both (i) and (ii).

3.1. Peripheral populations

We previously noted that in some populations
where immigration was very low, two equilibrium

Fig. 7. A. Central populations (population 1) have
lower rates of loss (/) and higher rates of gain (g,)
than peripheral populations, and consequently have
higher equilibrial population densities (1\71). Popula-
tions on the edge of the spatial gradient (population 3)
may have sufficiently low rates of population gain (g,)
that there are two equilibrium densities, one stable
(1‘73) and one unstable (N). B. Spatial pattern of equi-
librium population densities when peripheral popula-
tions have two equilibria. Fluctuations in population
density that drop peripheral populations below un-
stable equilibrial densities (1\74) will go extinct.

points can be achieved, one stable and the second un-
stable, leading to a minimum population density nec-
essary to prevent local extinction. In some species,
peripheral populations may have sufficiently low
immigration rates that when they are subject to acute
reductions in population density due to action of sto-
chastic factors, they are unable to recover (Fig. 7).
This suggests that the proportion of suitable sites with
populations will be both lower and more variable in
peripheral habitats than in habitats near the center of a
species range. :

4. Dynamics of spatial variation in density

The equilibrium density of a local population de-
termines the direction of change (i.e. increases or de-
creases) that the population will experience at a given
density. Each local population will experience a spe-
cific set of conditions which regulates its dynamic
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behavior. Thus a local population might smoothly
approach its equilibrium density, it might oscillate
about its equilibrium in a periodic or chaotic fashion,
or it might suffer continual stochastic perturbations
which constantly prevent it from approaching
equilibrium. The dynamics of local populations will
also be tied to one another by the processes of immi-
gration and emigration. Since local densities might
fluctuate from generation to generation due to sto-
chastic and dynamic processes, small samples of
populations taken over short periods of time might
exhibit highly variable densities and possibly obscure
general patterns attributable to geographic trends in
equilibrium densities. However, when local popula-
tion trends are averaged over a sufficient period of
time, the mean patterns of population densities in
space might better reflect the underlying equilibrial
structure.

Certain species may continually undergo stochas-
tic perturbations so that they are continually in a
nonequilibrial state. This might be particularly true of
expanding populations. Several authors have sug-
gested that for expanding populations simple diffu-
sion processes might lead to Gaussian distributions in
space (Hengeveld and Haeck 1981, Rapoport 1982).
According to this view, the leading edge of the inva-
sion will consist of populations with low densities
while populations near the initial site of establishment
should maintain high densities (Skellan 1951). It is
conceivable that some populations might regularly
undergo population crashes across their ranges, and
thus be in a continual state of expansion as they
reinvade portions of their range from refugia. How-
ever, this is not likely to be the case if a species
maintains a relatively stable geographic boundary
over time. :

5. Discussion

Recently Brown (1984) has proposed an empiri-
cally motivated theory to explain the spatial distribu-
tion of abundance within and among species. Our
concern here is not to evaluate that theory but to place
it in the context of the underlying demographic pro-
cesses which may act to produce the spatial patterns.

Brown’s theory rests on the empirical generaliza-
tion that on a large scale species nearly always are
most dense near the center of their geographic range
and on a smaller scale that species also tend to be most
abundant near the center of local gradients of rapid
environmental change, such as on mountainsides or

within the intertidal zone. Brown’s thecry requires
two premises. First, it is assumed that the abundance
and distribution of a species is the result of the inter-
play of many different biotic and abiotic factors that
collectively define Hutchingson’s (1957) niche hy-
pervolume. Spatial variation in population density of
the species is assumed to reflect the probability den-
sity function of the required combination of niche
factors along a spatial dimension. The second premise
is that each niche variable is spatially autocorrelated,
so that sites in closest proximity tend to offer the most
similar combinations of environmental variables. The
environmental variables that characterize the niche of
each species are actually comprised of groups of
covarying factors, so that the original multidimen-
sional niche can be viewed as a lower dimensional set
of independently varying factors.

From these two assumptions, Brown (1984) rea-
sons that there is some area where the combination of
independently varying environmental factors allows
the species to obtain its maximum population density,
and that as one moves away from this area in any di-
rection, one or more environmental factors attain val-
ues that limit the density of the populations to pro-
gressively lower levels until a point is reached beyond
which local populations can no longer be sustained.
This statistical pattern seems to characterize the spa-
tial distributions of many kinds of plants and animals.
Brown’s (1984) evaluation of distributional patterns
suggests that normal (or Gaussian) distributions can
often be used to fit these distributions, but there is no
need to invoke the specific features of this distribu-
tions.

The ideas presented in this paper extend Brown’s
(1984) theory by showing how spatially varying
combinations of independent environmental factors
can result in spatial variation in population size
through differential rates of birth, death, immigration
and emigration in local populations. An important
feature of these ideas is that they do not depend on the
particular kinds of variables that limit individual spe-
cies.

One major advantage of the general approach we
have taken here is that attention is diverted away from
microscopic (local scale) phenomena that may often
have limited generality to macroscopic (large-scale)
statistical patterns and processes that may have much
wider applicability. Much of the ecological research
during the last several decades has been devoted to
investigating the environmental factors that deter-
mine the abundance and distribution of populations
and the organization of communities. Much time has
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been spent debating the relative importance of biotic
and abiotic factors, such as physical disturbance,
competition, and predation. Our own assessment is
that all of these factors are important for almost all
species and communities, and that because they inter-
act in complex ways it is often impossible and mis-
leading to try to assess their relative importance.
Niches are truly multidimensional, and though groups
of factors may covary independent of other groups,
many of the dimensions, including abiotic and biotic
ones, are not independent.

The evolution of multidimensional niches may
proceed in a number of ways. If one single factor were
of overwhelming importance in limiting the abun-
dance and distribution of a species, strong selection
would produce adaptations which would tend to miti-
gate the effects of that factor. Such selection should
continue to modify the species until a second limiting
factor assumed equal or greater importance. Further
phenotypic change in response to the first factor
would be constrained by selection operating on the
second factor, and selection would operate to amelio-
rate the simultaneous effects of both factors. A more
dynamic process, however, might be envisioned. If
the biological and physical environments in which a
species existed were constantly changing, at any
given instant in evolutionary time only a few of the
many factors in the environment might be responsible
for selection of the traits characterizing the niche. In
the next instant another small set of factors might be
responsible for the selection operating on the species,
and would likely have different consequences. This
constantly changing array of selective forces might
result in simultaneous phenotypic change resulting
in limitations occurring in many niche dimensions,
and preventing any one niche dimension from
being the major factor limiting the species geo-
graphically.

We suggest that attention needs to be focussed on
classes of patterns and processes that are general in
the sense that their expression is not highly dependent
on the nature of the underlying microscopic in-
teractions. While an improved understanding of local
patterns and processes may help elucidate some of the
underlying complexity which is responsible for
macroscopic patterns, these macroscopic phenomena
may result from any number of microscopic pro-
cesses. Both the general patterns described by Brown
(1984) and the more specific models presented here
do not depend on whether a local population is limited
primarily by temperature or moisture, competition or

predation, physical disturbance or biotic resources, or
some complex combination of all these and still other
factors. The present models assume only that there is
some most favorable site for each species and the
suitability of the site declines with increasing distance
from this site. Additional restrictions on the number
of niche variables, the extent to which they are inde-
pendent in their effects on the organism, and their
pattern of variation in space seem necessary to ac-
count for the symmetrical, approximately normal-
shaped distributions that appear to be observed fre-
quently in nature, but none of these are inconsistent
with our models. From the discussion above, it ap-
pears that several combinations of demographic proc-
essés can result in superficially similar patterns of
spatial variation in density. All that is necessary to
produce bell-shaped distributions is that overall gain
and loss functions assume certain reasonabie forms,
but the component rates of immigration and birth and
emigration and death can make very different contri-
butions and still satisfy these conditions. Thus, as
ecological conditions change from the center of the
species range to its periphery, our models predict a
decrease in average local density regardless of the
specific environmental factors involved.

Much of the emphasis of the models we have dis-
cussed is on spatial patterns, and we feel that this
focus is timely. Despite the fact that spatial variation
in populations and communities is one of the most
obvious features of the natural world, most ecological
models are concerned with variation as a function of
time, and variation in space is left largely to the
poorly developed science of biogeography. Never-
theless, statistical phenomena that are revealed in
space clearly must be viewed as manifestations of
underlying dynamic processes. The present paper has
explored some of the relationships between these
spatial and temporal patterns and processes. We hope
it will be possible to test and extend these ideas, both
by acquiring data on the comparative demography of
local populations in different parts of a species’ range
and by constructing and evaluating more sophisti-
cated models. For example, Peakall (1970) collected
data on clutch size variation in Eastern Bluebirds
(Sialia sialias) throughout its range in North Amer-
ica. He found that clutch size was highest in the center
of this species range. He further found that there was
a positive correlation between clutch size and local
population density. This suggests that reproductive
rates (and hence gain rates) of local populations of
Eastern Bluebirds decrease with increasing distance
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from its geographic center. The generality of this
phenomenon needs to be evaluated, and would pro-
vide data which would help evaluate the biogeo-
graphic significance of the models we have presented
here.
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