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During the breeding season, fishes may be confronted with the conflicting demands of
avoiding predators, feeding, mating, and providing parental care. I constructed a series
of three stochastic dynamic-programming models that explore these conflicting de-
mands in terms of tradeoffs between present and future reproduction. The state variables
were parental state (i.e. energy reserves) and nest state (i.e. number and age of offspring).
The tradeoffs were built in as behaviour dependent coefficients that reduce parental and
offspring survival, and as behaviour dependent increments or decrements to parental
energy reserves. I found that as parental energy reserves increase, courtship and parental
care both increase; whereas, feeding decreases. However, as offspring number or age
increases, parental care increases, and mating and feeding both decrease. Thus, with
respect to parental state, feeding is traded off against reproduction (i.e. mating and
caring); however, with respect to nest state, mating and caring are traded off against each
other. These results may provide insights into such phenomena as van lersel’s parental
phase (1953); that is, after some combinations of clutch number and age, parental male
fishes cease courtship and and show heightened levels of parental care.

studying animal behaviour assume that at least
part of an animal’s behavioural repertoire is the
result of natural selection, and functions in sur-

1. Introduction

Although zoologists have long realized the utility

of examining animal behaviour within an adap-
tive framework (e.g. Darwin 1859, 1871), the
widespread use of such an approach is relatively
recent (e.g. Tinbergen 1963, Wilson 1975, Krebs
& Davies 1978, 1984). Students of the adaptive or
functional approach (sensu Tinbergen 1963) to

vival or reproduction. Early models in behav-
ioural ecology usually examined a limited set of
behaviours over a narrow part of an animal’s
lifetime, and used different currencies, depending
on the situation at hand. For example, early forag-
ing strategy models examined feeding behaviour,
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and often used the currency of net energy per unit
time (e.g. Charnov 1976); whereas, early mating
strategy models examined mating behaviour, and
often used the currency of offspring produced per
unit time (e.g. Parker & Stuart 1976).

Implicit in the functional approach is that an
animal is confronted with behavioural options
that each contribute to some aspect of overall fit-
ness, but that there are constraints that prevent an
animal’s being able to optimize all of its options
simultaneously. For example, conflicts may exist
between feeding and predator avoidance (e.g. Sih
1980, Werner & Gilliam 1984, Milinski 1986), or
between parental care of current offspring and
future reproduction (e.g. Williams 1966, Sargent
& Gross 1986). With the advent of dynamic opti-
mization models, behavioural ecologists have been
able to examine broader sets of behavioural phe-
nomena (e.g. McFarland & Houston 1981, McFar-
land 1982), and have been able to incorporate
behaviours associated with survival and behav-
iours associated with reproduction into one theo-
retical framework (e.g. Gilliam 1982; Mangel &
Clark 1986, 1988; McNamara & Houston 1986,
Houston & McNamara 1988). This new class of
models in behavioural ecology is similar to many
traditional models in evolutionary ecology (e.g.
Stearns 1976, Charlesworth 1980, Pianka 1988).
Both examine phenotypic traits associated with
survival versus reproduction, and both use mean
population fitness (i.e. the Malthusian parameter,
r, or the net replacement rate, R ) as the currency
being maximized by natural selection.

Thus, there has been a convergence between
behavioural and evolutionary ecology, both in the
phenomena being examined and in analytical
approach. Perhaps the most promising of the newly
adopted analytical tools in these fields is stochas-
tic dynamic programming (Mangel & Clark 1986,
1988; McNamara & Houston 1986, Houston &
McNamara 1988). This technique offers numeri-
cal solutions to complex problems of dynamic
optimization.

There are three reasons why fishes represent
an ideal system for the joint approach of be-
havioural and evolutionary ecology. First, they
exhibit enormous phylogenetic diversity in their
life histories, which facilitates a comparative ap-
proach. Second, they can be readily studied in the
field and laboratory, which facilitates an ex-

perimental approach. Third, there is a vast liter-
ature on their behavioural and evolutionary ecol-
ogy (e.g. Potts & Wootton 1984, Pitcher 1986),
which provides the basic knowledge for the con-
struction of mathematical models.

In this paper, I use the approach of stochastic
dynamic programming and develop a set of three
simple models to examine the dynamics of be-
havioural tradeoffs that may confront fishes dur-
ing the breeding season. I start with a simple
model, and build toward more complex cases. The
tradeoffs that I examine are:

1) feeding versus mating,
2) feeding versus parental care, and
3) feeding versus mating versus parental care.

I use these models to address two phenomena.

1) In species of fishes with parental care the
amount of care that a parent provides initially
increases with increasing offspring age, and
then decreases as the offspring mature and
become independent (e.g. Sargent & Gross
1986).

2) Insome species of fishes with exclusive male
parental care, males appear to cease courtship
voluntarily, and switch into a parental phase
(sensu van Iersel 1953) until most or all of the
offspring are hatched and free swimming.

I'illustrate how both phenomena can be explained
as dynamic shifts in the tradeoff between present
and future reproduction.

2. The approach
2.1. Dynamic optimization

Dynamic optimization in behavioural ecology
uses a state space approach to model behaviour
and ontogeny (McFarland & Houston 1981,
McFarland 1982). With this approach, behavioural
ecologists can model several kinds of behaviour
simultaneously, and examine their consequences
in terms of a common currency such as lifetime
reproductive success. Dynamic optimization al-
lows decision variables (e.g. the particular behav-
iour chosen from the strategy set) to depend on
state variables (e.g. hunger, energy reserves, body
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size, offspring number, offspring age), which in
turn depend on past behavioural decisions. Dy-
namic optimization finds behavioural trajectories
through anindividual’s lifetime (Stephens & Krebs
1986).

Oster & Wilson (1978) identify five essential
components of dynamic optimization models (for
a lucid discussion, see Mangel & Clark 1988,
Chapter 8). These are:

1) Optimization criterion: the currency being
maximized.

2) The strategy set: the set of behavioural options
available to an animal.

3) State space: all combinations of magnitudes
of variables that depend cumulatively on past
decisions, and that determine the present op-
timal policy.

4) Constraints: the limitations on the state space.

5) State dynamics: the rules for moving through
the state space.

To this list I add a sixth component:

6) Tradeoffs: the biotic or abiotic factors that
constrain an animal’s ability to maximize all
of its options simultaneously.

In order to construct and solve a dynamic opti-
mization model, one needs to explicitly specify
each of these components.

2.2. Stochastic dynamic programming

Stochastic dynamic programming models find
numerical solutions, usually with the aid of a
computer. The algorithms for solving these mod-
els are relatively simple, and within the realm of
any “computer literate” empirical behavioural
ecologist. Dynamic programming models are
solved by iterating backward through time, fol-
lowing Bellman’s (1957) principle of optimality:
“An optimal policy has the property that, what-
ever the initial state and initial decision are, the
remaining decisions must constitute an optimal
policy with regard to the state resulting from the
first decision.” Put another way, the optimal tra-
jectory from some initial time, ¢, to some final
time, T (also known as the time horizon), contains
the optimal trajectory from time 7—1 to T. Thus, to
find the optimal trajectory from ¢ to T, one first

finds the optimal trajectory form 7—1 to T, then the
optimal trajectory from 7-2 to T-1, and so on back
to ¢. The basic task of constructing a dynamic
programming model is in specifying the dynamic
programming equation, or DPE. Specifying the
DPE first requires specifying the state dynamics.
In the models that follow, I will use either one or
two state variables. These are:

1) parental state (i.e. energy reserves), and
2) nest state (i.e. a combination of number of
clutches and their ages within a parent’s nest).

Dynamic programming with one state vari-
able. Ateach time t, for each parental state x(t), we
can find a behaviour B*(f,x(f)) that maximizes
fitness, F(t,x(1)), where the maximum is written as
F*. This requires that we know F*(t+1, x(+1)),
for all possible x(¢+1). B*(t,x(7)) and x(¢) jointly
determine x(#+1). The recursions for the state
variable and for fitness, in general form, are:

x(t+1) = £, [£.B(t.x()).x(D)], (1)
and

F(tx() = f,[t.B(t.x(0) x(0),F*(t+1,x(t+1))], (2)

where f, and f, represent functions. Equation (1)
specifies the state dynamics. Substituting (1) into
(2) gives the general form of a DPE with one state
variable.

Dynamic programming with two state vari-
ables. This is a similar process, except that we
need to incorporate the state dynamics of the
second state variable, which in our case is nest
state, y(7). The recursions for the two state vari-
ables and for fitness, in general form, are:

x(t+1) = £[1B(x(0),y(0) x(0).y ()], 3)
y(t+1) = f[1B(x(0).y(0) x(0).y(1)], “)

and

F(t.x(0),y(1)) = f,[t.B(t,x(2),y(1).x(1),3(),
FH(t+1 x(t+1),y(t+ 1)1, ()

where f., f,, and f, represent functions. Equations
(3) and (4) specify the state dynamics, and equa-
tion (5) is the DPFE for two state variables.

To solve the DPE (i.e. equation (2) or (5)), we
begin by initializing our terminal fitnesses at the
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time horizon, 7. Terminal fitness is zero if the
animal is dead at the time horizon; otherwise it is
positive, and represents future reproduction after
time 7. Also, terminal fitness may be either de-
pendent or independent of the state variables. In
the models that follow, I assume that terminal
fitness is an increasing function of energy re-
serves. Then starting at T—1, we iterate backward
over time over all combinations of our state vari-
ables, and find the optimal behaviour for each
time step. We begin by finding the optimal behav-
iours and the associated fitnesses for all combina-
tions of the state variables for 7—1. Once this is
achieved, we now have a new set of terminal
fitnesses. We then repeat the process for 7-2, and
so on back to 1=0.

The resulting solution is a function of the pa-
rameter values, which are chosen from knowl-
edge of the system being modeled (Mangel &
Clark 1986, 1988). To examine the robustness of
the solution, one performs a sensitivity analysis.
For each model, I have manipulated each pa-
rameter plus and minus a small amount relative to
its default value and convinced myself that the
qualitative trends are not artifacts of the parame-
ter values. To save space I do not present these
sensitivity analyses. Although it would be desir-
able to examine the optimal solution over all
combinations of parameter values (over discrete
intervals), this task is impossible to complete
within a reasonable amount of time due to the
dimensionality of the models.

Nevertheless, these models may be useful in
identifying important ecological variables that af-
fect animal behaviour. My approach is as follows.
First, I construct a model whose default solution
qualitatively mimics known fish behaviour. Then
I manipulate one or more of amodel’s parameters
and examine whether the resulting change in
optimal policy qualitatively mirrors what happens
in a natural system under similar manipulations. If
so, then I may have gained some insights into the
mechanisms that regulate animal behaviour. If
not, then one or more of the model’s assumptions
are false, which is also useful information. For
eachmodel, I present an example of such a manip-
ulation.

3. The models

During the breeding season, fishes may be con-
fronted with the problems of predator avoidance,
feeding, mating, and parental care. In the past,
these sorts of phenomena have been modeled with
static resource allocation models (e.g. Pressley
1976, Carlisle 1982, Sargent & Gross 1985, 1986).
In these models, an animal is assumed to be able
to vary continuously the proportion of resources
it invests in each of its behavioural options, sub-
ject to the constraint that any resource invested in
one option cannot be invested in another. There
have beenrelatively few dynamic resource alloca-
tionmodels (but see Oster & Wilson 1978, Mangel
& Clark 1986, 1988 (Chapter 6)), probably be-
cause the state dynamics of such models can be
prohibitively complex. Therefore, as a first ap-
proximation to dynamic resource allocation, I
have based the following models on Mangel &
Clark’s simple patch selectionmodel (1988, chap-
ter 2). That is, rather than have continuous deci-
sion variables, I assume that an animal must
choose from a discrete menu of behavioural op-
tions. In spite of this assumption, I nevertheless
found dynamics that resemble those of resource
allocation models.

I build in tradeoffs in two ways. These are
behaviour dependent increments or decrements to
parental energy reserves, and behaviour dependent
multiplicative probability reducing coefficients,
which are decimal fractions. These coefficients
impose costs to parental survival and offspring
survival, depending on the behaviour chosen. One
mightalso include costs of doing one behaviour to
success at another behaviour; for example, at-
tempted feeding may reduce the probability of
successful mating. However, to keep the presen-
tation simple, I chose not to examine this second
set of costs.

Within a time step, I assume the following
general sequence of events:

1) choose the behaviour for that time step,

2) tally reproduction and/or offspring survival,
3) update parental energy reserves,

4) tally parental survival.
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The models that follow were compiled in
QuickBASIC 4.0 or Turbo Pascal 5.0, and ana-
lyzed numerically on an 80286 based microcom-
puter.

3.1. Feed or Mate?

Imagine that a fish has just entered the beginning
of the breeding season, and is confronting a trade-
off between feeding and mating (assume no pa-
rental care). I define the time horizon, T, as the end
of the breeding season.

The six components of the dynamic pro-
gramming model are as follows:

1) Optimization Criterion, maximizing remain-
ing lifetime reproductive success. The model
assumes a stationary population and maxi-
mizes the sum of all matings this season plus
a terminal fitness function at the end of the
season.

2) Strategy Set, B(t,x()). A fish may choose one
of the following four behaviours:

a) do Nothing, which represents passive
predator avoidance (e.g. hiding);

b) Feed, which yields a unit of energy with
probability L

¢) Mate, which yields one unit of fitness with
probability G;

d) Feed & Mate; the probability that the fish
is successful at both is L-G (i.e the events
are assumed to be independent); the proba-
bility that the fish is only successful at
feeding is L (1-G); the probability that the
fishisonly successful at matingis G (1-L);
the probability that the fish is not success-
ful at feeding or mating is (1-L) (1-G).

3) State Space: x(¢) = parental energy reserves.
These are incremented or decremented de-
pending on the behaviour chosen.

4) Constraints. The state space is constrained
such that parental energy reserves lie between
zero and some maximum value; i.e. 0 < x (1) <
Capacity.

5) State Dynamics, x(1+1) = x(1)+Ax(B(?)); pa-
rental energy reserves at time f+1 depend on
the behaviour chosen at time ¢, i.e. B(t,x()). I
assume that a fish who does nothing pays a
metabolic cost of | unit of energy reserve. A

fish who attempts to Feed and is successful
gains +2 energy units, which when added to
the metabolic costyields anet gainof +1; afish
who attempts to feed but is unsuccessful sim-
ply pays the metabolic cost of 1. A fish who
attempts to Mate, whether or not it is success-
ful, pays a cost of 1 energy unit, which when
added to the metabolic cost yields a net loss of
2. A fish who attempts to Feed & Mate has its
energy reserves adjusted for feeding, mating
and metabolism, which yields anet gain of 0 in
its energy reserves if it finds food; otherwise it
pays a net cost of 2 energy units.

6) Tradeoffs. The tradeoffs are imposed by be-
haviour dependent probability reducing coef-
ficients of parental survival, which are p, for
Feed, p, for Mate, and the product of the two
for Feed & Mate, and as behaviour dependent
state dynamics for parental energy reserves
(see State Dynamics, above).

Table 1 lists the model’s parameters and their
default values; Table 2 lists each behaviour in the
strategy set, and its consequences for parental
state dynamics and for parental survival. The fit-
ness a fish would enjoy from choosing any be-
haviour, F,, can now be written as:

F,(t,x(1) =
Pr (mating in t)+ Pr (surviving t) -

(SPriGe(+D=j) F'(t+1 ). ©
j=1

The first additive term on the right hand side of (6)
tallies any mating that occurs in time step f,
whether or not the parent survives until #+1, and
whether or not the parent also finds food. The
second additive term on the right hand side of (6)
tallies expected future reproductive success if the
parent does survive until #+1. This term sums over
all parental state transition probabilities between
t and #+1, which depend on x(¢) and on B(t,x(¢)).
These parental state transition probabilities are
then multiplied by their respective F*’s at t+1, for

x(t+1) = x(H+Ax[B(t,x(1))].

For any given time step, the optimal behaviour is
the one that maximizes F,,.

Thus, equation (6) is the DPE. To solve the
DPE, one begins by initializing terminal fitness at
the time horizon, T. I decided to make terminal
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fitness arbitrarily small and positive, which rep-
resents a small probability of a future breeding
season. Moreover, I assumed that terminal fitness
increases with increasing x(7); i.e.

o(x(T)) = 0.001x(T).

Then starting at 7—1, one iterates (6) backward
over time over all levels of parental state, to the
beginning of the breeding season. The results
of the default run are presented in Table 3 and
Fig. I.

An interesting property of dynamic pro-
gramming models is the phenomenon of station-
arity. If the parameters are independent of time,
and if the distance between ¢ and T is sufficiently
large, then the optimal behaviour is independent
of time, and independent of the terminal fitness
function, provided it is nonzero (McNamara &
Houston 1982, Mangel & Clark 1988). In this
model, the breeding season was arbitrarily set at
30 time steps. Stationarity was maintained until
T-8 (i.e. 1=22).

The basic results of the model are the fol-
lowing. Fitness increases with increasing energy
reserves. This is because as energy reserves in-
crease, the parent has more energy to invest in
reproduction, and because the parent can afford to
avoid the risks associated with feeding. Fitness
also increases with increasing time before the end
of the breeding season, because the longer the
breeding season, the more opportunities there are
for mating. At low energy reserves, the parent
Feeds; at intermediate energy reserves the parent
Feeds & Mates; athigh energy reserves the parent
Mates. Thus, during the breeding season, the more

Table 1. Parameters of Feed or Mate?, and their
default values.

T=30 time horizon or length of breeding
season in discrete time steps

Capacity=15 maximum level of energy reserves

G=0.6 probability of mating within a time step

L=0.6 probability of feeding within a time
step

P=0.99 probability of surviving a time step

p,=0.9 survival coefficient due to mating

p=0.9 survival coefficient due to feeding

[ ] Feed | Mate
D Feed & Mate

Energy reserves x(t)

Default pm=0.8 pm=1.0 pf=0.8 pf=1.0

Runs

Fig. 1. Agraphical representation of the results of Feed
or Mate? from Table 3. Along the vertical axis is level
of parental energy reserves. The individual runs are
depicted along the horizontal axis.

energy reserves a parent has, the more likely it is
willing to invest in reproduction.

We can examine the effects of the tradeoff
between feeding and mating by manipulating p,
and p . InTable 1 and Fig. 1, I present the results
of manipulating these parameters £0.1 with re-
spectto their default values. The qualitative trends
of these manipulations mirror those of the default
run; however, two interesting patterns appear. As
the cost of either feeding or mating decreases (i.e.
as p,or p,_increases), the distribution of Feed &
Mate among levels of energy reserves increases.
Thus, the intensity of the tradeoff between feeding

Table 2. Feed or Mate? The four possible behaviors,
and their consequences for parental energy reserves
and parental survival.

Behaviour Change in parental Parental
state state survival
Nothing —1 P
Feed +1 with Pr(L), else —1 Pp,
Mate -2 Pp..
Feed & Mate 0 with Pr(L), else —2 Pp.p,,
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and mating determines the distribution of Feed &
Mate among levels of energy reserves. Although
these results are not surprising, they are useful for
constructing and understanding the third model
below: Feed, Mate or Care?

3.2. Feed or Care?

In fishes with parental care, the amount of care
that a parent provides is known to depend on two
components of the state of a parent’s nest:

1) offspring number, and
2) offspring age (e.g. Sargent & Gross 1986).

Parental care increases with increasing offspring
number. In addition, the level of parental care
covaries with offspring age. Early in the nesting
cycle, parental care increases as offspring age in-
creases; however, after some point, parental care
decreases as the offspring mature and become free
swimming larvae. We constructed a simple static
resource allocation model to investigate these
patterns (Sargent & Gross 1986), and found that
the optimal level of parental care increases as the
rate of return on investment in current offspring
increases. We used this result to explain both the
dependence of parental care on offspring number,
and on offspring age.

To explain the positive correlation between
parental care and offspring number, we (Sargent
& Gross 1986) argued that for fishes, the pre-
dominant form of parental care is guarding, which
is a divisible resource (Wittenberger 1981). The
benefit of one unit of guarding to offspring sur-
vival should be largely independent of offspring
number; therefore as offspring number increases,
sodoes a parent’srate of return on defending those
offspring.

To explain how parental care covaries with
offspring age, we constructed a series of static
resource allocation models, whose tradeoffs
changed with offspring age (Sargent & Gross
1986). We assumed that early in the nesting cycle
that offspring survival without care is constant,
and independent of offspring age. Therefore, early
inthe nesting cycle, as offspring age increases, the
rate of return on investment in offspring defense
increases, simply because older offspring are closer
to independence. We assumed that late in the
nesting cycle offspring survival without care in-
creases as offspring age increases, because the
offspring are now becoming more able to care for
themselves. As offspring survival without care
approaches offspring survival with maximal care,
the rate of return on investment in offspring de-
fense decreases as offspring age increases. We
hypothesized that this decrease in the rate of

Table 3. Feed or Mate? The results of the default run, and of the runs that manipulate p, and p,+ 0.1 with respect
totheir default values, evaluated at t=1. B*represents the optimal behaviour, and F*represents maximum fitness.

F is Feed, M is Mate, and FM is Feed & Mate.

Energy Default p,=0.8 p,=10 p,=08 p,=1.0
Reserves F B F* B F*  B" F* B* F* B*
1 0.53 F 0.47 F 0.62 F 0.32 F 1.55 F
2 0.81 F 0.70 F 0.94 F 0.52 F 2.27 F
3 1.00 F 0.87 F 1.16 F 0.68 F 2.68 F
4 1.16 F 1.00 F 1.36 F 089 FM 2.87 F
5 133 FM 1.16 FM 1.54 FM 1.07 FM 2.99 F
6 1.50 FM 1.30 FM 1.76 FM 121 FM 3.15 F
7 1.64 FM 1.40 FM 1.96 FM 131 FM 3.23 F
8 1.76 FM 1.49 FM 213 FM 1.41 FM 3.31 F
9 1.87 FM 1.57 FM 229 FM 1.55 M 3.44 FM
10 1.98 FM 1.64 FM 245 FM 1.68 M 350 FM
11 207 FM 1.71 M 260 FM 177 M 358 FM
12 217 M 178 M 275 FM 186 M 369 FM
13 2.27 M 184 M 288 FM 199 M 375 FM
14 2.36 M 1.90 M 3.02 M 2.09 M 3.81 FM
15 2.45 M 1.95 M 3.18 M 217 M 391 FM
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return on investment in offspring defense with
increasing offspring age late in the nesting cycle is
the cause of the observed decline in the level of
parental care late in the nesting cycle that is
observed in nature.

Now, I will illustrate how both patterns can be
understood with an explicit stochastic dynamic
programming model. Imagine that a fish has just
mated and has either one or two clutches in its
nest. Assume that further mating is impossible,
and that our hypothetical fish is confronted with a
tradeoff between feeding and parental care. An
example of such a system is paternal care in the
bluegill sunfish, Lepomis macrochirus; females
are only available for spawning with males for the
first one or two days of the nesting cycle (Coleman
et al. 1985). I define the time horizon, T, as the
time at which all offspring are hatched and inde-
pendent of parental care.

The six components of the dynamic pro-
gramming model are as follows:

1) Optimization Criterion, maximizing remain-
ing lifetime reproductive success. The cur-
rency being maximized is the number of
clutches alive at time 7 (the end of the nesting
cycle) plus a terminal fitness function at
time 7.

Table 4. Parameters of Feed or Care?, and their
default values.

=6 time horizon or length of nesting cycle in
discrete time steps

Capacity=10 maximum level of parental energy

reserves

L=0.6 probability that feeding within a time
step is successful

u=0.3 probability that a clutch survives a time
step without care

w=0.9 probability that a clutch survives a time
step with care

P=0.99 probability that the parent survives a
time step

p=0.9 parental survival coefficient due to
caring

p~0.9 parental survival coefficient due to
feeding

g9=0.9 clutch survival coefficient due to feeding

2) Strategy Set, B(t,x(¢),y(¢)). The behavioural
options are four behaviours:

a) Do Nothing,

b) Feed,

c) Care, or

d) Feed & Care.

3) State Space, (x(),y(#)). The state variables are
parental energy reserves, x(¢), and the number
of clutches in the nest, y(f).

4) Constraints. Parental energy reserves are
constrained as follows: 0 < x(¢) < Capacity.
Clutch number is constrained as follows:
y(t) =0, 1, or 2 clutches.

5) State Dynamics.

a) Parental energy reserves:

T x(t+1) = x(0)+ Ax[B(t,x(2),(1))].

The behaviour dependent changes in pa-
rental energy reserves are essentially those
of the previous model: Feed or Mate?

b) Clutch number: the survival of each clutch
is independent of the survival of other
clutches. A parent with O clutches at time
t will have O clutches at time #+1; a parent
with 1 clutch at time r may have either 1 or
0 clutches at time #+1; a parent with 2
clutches at time ¢t may have 2, 1, or 0
clutches at time r+1.

6) Tradeoffs. The tradeoffs are produced by
multiplicative probability reducing coeffi-
cients, and by behaviour dependent state dy-
namics for parental energy reserves (see State
Dynamics, above). Parental survival is re-
duced by p for Feed, by p _for Care, and by the
product of the two for Feed & Care. Offspring
survival is increased from u to w if the parent
Cares. Offspring survival with care is reduced
by ¢, if the parent Feeds.

Table 4 lists the model’s parameters and their
default values, and Table 5 lists each behaviour in

Table 5. Feed or Care? The four possible behaviors,
and their consequences for parental energy reserves,
parental survival, and clutch survival.

Behaviour Change in parental Survival
state parental clutch
Nothing -1 P u
Feed +1 with Pr(L), else =1 Pp, u
Care -2 Pp, w

Feed & Care 0 with Pr(L),else—2  Pp,p.  wg,
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the strategy set, and its consequences for parental
energy reserves, parental survival, and clutch
survival. The fitness that a fish would enjoy from
choosing any behaviour can now be written as:

Fp(t,x(1),y (1))=

Pr ( parent dies in t) -

Pr (clutch survival until T ) -y (t)+
Pr ( parent surviving t) -

(Z[Prx(t+1)=j)-

YPriy(t+)=k) F'(t+1,j,k)]).(D

The first additive term on the right hand side of (7)
tallies clutch survival if the parent dies at the end
of t. Clutch survival during ¢ depends on
B(t,x(1),y(1)); clutch survival from #+1 to T equals
u™Y, The second additive term on the right hand
side of (7) tallies future reproductive success if the
parent survives to #+1. This term sums over all in-
dependent parental state by nest state transition
probabilities between ¢ and r+1, which depend on
x(1), y(t), and B(t,x(1),y(t)) (Table 4). These transi-
tion probabilities are then multiplied by their
respective F*’sevaluated atx(#+1)=jand y(t+1)=k.
Equation (7) is the DPE.

To solve the DPE, we first set the terminal
fitnesses at 7. I set terminal fitness as follows:

O (D)) = (D)+0.15:x(T).

We theniterate (7) backward through time overall
levels of parental state and nest state. The default
parameters are rough approximations based on
unpublished data in past studies with fishes with
paternal care (i.e. Gasterosteus aculeatus, Sargent
& Gebler 1980; Lepomis macrochirus, Coleman
et al. 1985; Pimephales promelas, Unger & Sar-
gent 1988; Etheostoma flabellare, Knapp & Sar-
gent 1989). In the first run of the model, clutch
survival without care was assumed to be constant
in time, and always less than clutch survival with
care (which is also constant in time). In the second
run of the model, clutch survival without care was
assumed to be constant in time until the eggs
hatched, and to then increase linearly toward
clutch survival with care as ¢ approaches T.

The results of the default run are presented in
Table 6 and Fig. 2. A fundamental difference
between this model and the last one is that here we

are most interested in the optimal behaviour as ¢
approaches T. In the previous model, we were
most interested in the optimal behaviour when the
interval between t and T was sufficiently large that
stationarity was achieved. In this model, the sta-
tionary solution is to Feed for energy levels 1 to 9,
and to do Nothing atenergy level 10. Note that the
stationary solution is the only solution when the
parent has no clutches; i.e. when y(#)=0.

In the first run, clutch survival without paren-
tal care (1) was constant in time. Here we see that
the incidence of parental care increases as clutch
number increases, and as clutch age increases
(Table 6, Fig. 2). Note that it was not necessary to
assume that the need for care increases with in-
creasing clutch number or age. Had we made this
assumption, by making u a decreasing function of
increasing clutch number or age, then we would
have seen an even stronger tendency for care to
increase with clutch number or age. Finally, note
that the incidence of parental care does not de-
crease to zero as the clutches approach independ-
ence.

In the second run, # was constant in time from
t=1to r=3, after which u increased linearly toward
w as t approached T (Fig. 3). Again, the incidence
of parental care increases as clutch number in-
creases, and as clutch age increases, but only up to
point. At t=5, u=w, and parental care is no longer
observed. Thus an improvement in offspring sur-
vival with increasing offspring age near the end of
the nesting cycle could be responsible for the
decrease in parental care that is observed in nature
under similar circumstances.

3.3. Feed, Mate or Care?

Now, let us consider the case of fishes with ex-
clusive paternal care, which is the most common
form of parental care in fishes (Blumer 1979,
1982, Gross & Shine 1981, Gross & Sargent
1985). Male fishes who are guarding eggs may be
confronted with the conflicting demands of avoid-
ing predators, feeding, caring for eggs already in
the nest, and increasing the the number of female
clutches in the nest through additional matings.
An interesting phenomenon in some of these
species is that after the eggs are a certain age, or
after the male has a certain number of clutches, he
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Fig. 2. A graphical representation of the results of the
default run of Feed or Care? from Table 6. Clutch
survival without care is assumed to be constant in time
(i.e. u=0.3). Along the horizontal axis is time, which
equals clutch age. Along the vertical axis is level of
parental energy reserves. The three nest states, i.e. 0,
1, or 2 clutches are stacked vertically. For ease of
presentation in this graph, and in Figs. 3, 4, 5, and 6,
discretization artifacts have been eliminated. These
discretization artifacts appear as discontinuities or
reversals in the optimal behaviour with increasing
parental state, and are found to depend on assumed
behaviour dependent increments or decrements to
parental energy reserves. In Table 6, the discretization
artifacts are at x()=2, y(f)=1, t=4; x(1)=6, y()=2, =2,
x(t)=2, y(f)=2, t=3,4.
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Fig. 3. Feed or Care? Offspring survival without care is
constant in time until t=3, after which offspring survival
without care increases to equal offspring survival with
care. u(1)=0.3, u(2)=0.3, u(3)=0.3, u(4)=0.6,
u(5)=w=0.9.

will cease courting females and exhibit a height-
ened level of parental care. The best documented
example of this phenomenonis van Iersel’s (1953)
work on the “parental phase” in the threespine
stickleback, Gasterosteus aculeatus.

Van lersel (1953) found that male stickle-
backs switch into the parental phase after the eggs
are roughly 3—6 days old, even if the male only has
one female’s clutch of eggs in his nest. He also
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Table 6. Feed or Care? The results of the default run, evaluated from t=1to t=5 (7=6), and over nest states, y()=0,
y(h=1, and y(f=2. Offspring survival without care, v, is constant in time (i.e. u=0.3). x(1) represents parental
energy reserves; B* represents the optimal behaviour, and F* represents maximum fitness. N is Nothing, F is

Feed, C is Care, and FC is Feed & Care.

Wy x t=1 t=2 t=3 t=4 t=5
F* B* F*  B* F* B* F* B F* B*
0 1 014 F 014 F 0.15 F 016 F 016 F
2 024 F 026 F 0.27 F 029 F 029 F
3 033 F 036 F 0.38 F 040 F 043 F
4 042 F 045 F 0.49 F 052 F 056 F
5 051 F 055 F 0.59 F 064 F 069 F
6 059 F 064 F 0.70 F 076 F 083 F
7 061 F 073 F 0.81 F 088 F 096 F
8 075 F 083 F 0.90 F 100 F 110 F
9 083 F 091 F 1.01 F 111 F 123 F
10 090 N 101 N 1.09 N 122 N 134 N
1 1 014 F 016 F 0.18 F 031 FC 062 FC
2 025 F 027 F 0.33 F 045 F 069 FC
3 034 F 038 F 0.44 F 0.68 FC 107 FC
4 043 F 047 F 0.57 F 0.76 FC 119 FC
5 051 F 057 F 0.67 F 093 FC 132 FC
6 059 F 066 F 0.78 F 104 C 144 FC
7 068 F 075 F 0.88 F 115 C 157 C
8 075 F 085 F 0.98 F 125 C 170 C
9 083 F 093 F 1.08 F 187 © 184 C
10 090 N 1.02 N 117 N 149 C 197 C
2 1 014 F 017 F 025 FC 056 FC 117 FC
2 025 F 029 F 0.41 c 062 C 124 FC
3 035 F 040 F 066 FC 118 FC 193 C
4 043 F 051 F 073 FC 127 FC 207 C
5 052 F 0.62 FC 1.01  FC 163 C 220 C
6 060 F 071 F 110 FC 174 C 233 C
7 069 F 0.86 FC 135 C 18 C 247 C
8 077 F 094 FC 145 C 198 C 260 C
9 085 F 113 C 155 C 210 C 274 C
10 093 N 122 C 168 C 398 & 287 C

found that the level of male courtship (i.e. zig
zags) decreases as clutch age increases, and as
clutch number increases. Here, I illustrate how
van lersel’s parental phase can be explained
within the framework of conflicting demands in a
dynamic optimization problem. I let the time
horizon, T, represent the end of the breeding
season.

The six components of the dynamic pro-
gramming model are as follows:

1) Optimization criterion, maximizing remain-
ing lifetime reproductive success. The model
maximizes the sum of all clutches hatched
during the breeding season plus terminal fit-
ness at the end of the season.
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2)

3)

4)

5)

0)

The strategy set, B(t,x(7),y(t)). The alterna-

tives are eight behaviours:

a) Do Nothing,

b) Feed,

c) Mate,

d) Care,

e) Feed & Mate,

f) Feed & Care,

g) Mate & Care,

h) Feed, Mate & Care.

To keep our model manageable on a micro-

computer, I made feeding deterministic;

however, mating is stochastic.

State Space, (x(f),y(?)). The state variables are

parental male energy reserves, and the number

and ages of clutches in his nest.

Constraints.

a) Paternal energy reserves are constrained
as follows: 0 < x(¢) < Capacity.

b) Nest state is constrained as follows. It
takes a male one time step to obtain one
clutch, and it takes a clutch three time steps
to hatch and be independent of paternal
care. Thus, there are eight possible nest
states:

0, no clutches;

1, one clutch age 1,

2, one clutch age 2,

3, one clutch age 3,

12, two clutches ages 1 and 2,

23, two clutches ages 2 and 3,

13, two clutches ages 1 and 3, and
123, three clutches ages 1, 2, and 3.

State dynamics.

a) Parental energy reserves: parental energy
reserves at r+1 depend deterministically
on the behaviour chosen:
x(t+1) = x()+Ax[B(t,x(1),y(1))].

b) Neststate: the number and ages of clutches
in a male’s nest depend stochastically on
the behaviour chosen. Nest state may
change due to the acquisition of one clutch
through mating, the loss of one or more
clutches due to predation or disease, the
aging of one or more clutches to older
age classes, and the hatching of an age 3
clutch.

Tradeoffs. The tradeoffs are produced by

multiplicative probability reducing coeffi-

cients, and by behaviour dependent state dy-
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namics for parental energy reserves (see State
Dynamics, above). Parental survival is re-
duced by p, for feeding, p,, for mating, p_for
caring, and by the products of these coef-
ficients for the combined behaviours. Off-
spring survival is increased from u to w if the
parent cares for its offspring. Offspring sur-
vival with care, w, is reduced by ¢, if the parent
feeds, and by ¢, if the parent attempts to mate.

Table 7 lists the model’s parameters and their
default values, and Table 8 lists each behaviour in
the strategy set and its consequences for parental
energy reserves, parental survival, and offspring
survival. The fitness that a parental male fish

Table 7. Parameters of Feed, Mate or Care?, and their
default values.

T=30 time horizon or length of breeding
season in discrete time steps

Capacity=20 maximum level of parental energy

reserves

u=0.3 probability that a clutch survives a
time step without care

w=0.9 probability that a clutch survives a
time step with care

G=0.6 probability that the parent mates suc-
cessfully within a time step

P=0.9 probability that the parent survives a
time step

p,=0.9 parental survival coefficient due to
courting females

p~0.9 parental survival coefficient due to
feeding

p=0.9 parental survival coefficient due to

caring for eggs

q,=0.9 clutch survival coefficient due to a
male’s courting females. Courtship
may attract predators to a male’s nest;
therefore, g, affects uand w

g=0.9 clutch survival coefficient due to feed-
ing. This only affects w, when a male
combines feeding and caring
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would enjoy from choosing any behaviour can
now be written as:

F o, x(D,y(0))=

Pr(age 3 clutch hatches in t) +
Pr(mdle dies in t) -

3

> Pr(clutches hatch int+1)+
i=1

Pr(male survives t) -
8
(Z[Pr(y(i+D=]):
F (141, x +Ax (B(t, x(£), y(t))), D). (8)

The first additive term on the right hand side of
(8) accounts for any age 3 clutch that hatches in
time step #, which depends on the behaviour chosen,
B(t,x(1),y(1)).

The second additive term on the right hand
side of (8) tallies the expected reproductive suc-
cess if the male dies during 7. If the male dies, his
state is set to zero. Hatching in #+1 or ++2 assumes
that the male obtained clutches in -2 and -1, re-
spectively, and that these clutches have survived
until . The probability that these clutches survive
through ¢ depends on B(z,x(),y(#)). Their survival
beyond ¢, after the male is dead, is the product of
the u’s up until hatching. The probability of hatch-
ing in 7+3 is the probability that the male mated in
t, multiplied by u°.

The third additive term in the right hand side of
(8) tallies expected reproductive success if the
male survives through time step 7. This term sums
over all possible nest state transitions between ¢
and t+1, which depend on x(¢) and B(#,x(¢),y(1)).

Table 8. Feed, Mate or Care? The eight possible
behaviors, and their consequences for parental en-
ergy reserves, parental survival, and clutch survival.

Behaviour Change in Survival
parental state parental  clutch
Nothing -1 P u
Feed +1 Pp, u
Mate -2 Pp,, uq,
Care -2 Pp, w
Feed & Mate 0 Pp,p, uq,
Feed & Care 0 Pp, p, wq,
Mate & Care -3 Pp,p. wq,,
Feed, Mate & Care —1 Pp.p,p. Wwq,q,

These nest state transition probabilities are then
multiplied by their respective F*’s at t+1, and for

x(t+1) = x()+Ax[B(t,x(1),y(1))].

These nest state transition probabilities can be
obtained from the following simple algorithm.
Let us consider the most complex case, nest
state /23. For a=110 3, let A  be the probability of
survival (aging) of a clutch of age @, and D be the
probability of death of a clutch age a; 0<A < 1and
D, =1-A . Let G be the probability of mating;
0<G <1 if B(tx(2),y(f)) incorporates mating;
otherwise, G=0. To find all possible transition
probabilities we expand the expression:

3
(G+1-G6) II@, +D,)
a=1
where each term in the expansion represents a
different nest state transition probability. For
simpler nest states with one or more missing
clutch age classes, we simply let A =0 and D = 1
for each missing age class.

Equation (8)is the DPE. Tosolve the DPE, we
begin by initializing the terminal fitness function
at the end of the breeding season. Terminal fitness
was set as follows:

o(x(T)) = 0.001x(T).

Then, starting from 7—-1, we iterate backward in
time, over all combinations of parental state and
nest state, to the beginning of the breeding season.

Table 9 and Fig. 4 present the results of the
default run for r=1, which nicely illustrates van
Iersel’s parental phase (1953). The breeding sea-
son was set at 7=30, and a stationary solution was
maintained until 7-14. Thus, we can use Table 5
or Fig. 4 to move through time for the first 15 time
steps.

Starting at a nest state of zero clutches and
maximum parental energy reserves (i.e. y(1)=0
and x(7)=20), we see that the optimal behaviour is
Mate. If the male mates successfully, we then re-
enter the figure at y(f)=1 and x(¢)=18. Here the
optimal behaviour is Mate & Care. Now, let us
consider two possibilities: the male either does or
does not mate successfully; we will also assume
that the first clutch survives.

If the male is again successful in mating, and
if his first clutch has survived, then we re-enter the
figure at y(£)=12 and x(7)=15. Here the optimal
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Fig. 4. Feed, Mate or Care? The results of the default
runfrom Table 9. Along the horizontal axis are the eight
nest states, and along the vertical axis is level of
parental energy reserves.

behaviour is Care, and assuming no clutch
mortality, Care remains the optimal behaviour
until both clutches hatch.

If the male fails to obtain the second clutch,
and the first clutch has survived, then we re-enter
the figure at y(r)=2 and x(7)=15. Here the optimal
behaviour again is Mate & Care. In fact, males
with one clutch do not enter the parental phase
until that clutch is age 3.

Thus, we have found two characteristics of
van lersel’s (1953) parental phase. These are, the
tendency for courtship to decrease to zero in-
creases with

1) increasing clutch age and
2) .increasing clutch number.

Presumably, the parental phase in the model is due
to one or both of our mating costs, which are
reflected in reduced offspring survival due to ¢, ,

or reduced parental survival due to p . We can test

Table 9. Feed, Mate or Care? The defaultrun at t=1, evaluated over all levels of Male State (i.e. energy reserves)
and Nest State. B* represents the optimal behaviour; F*represents maximal fitness. F is Feed, M is Mate, C is
Care, FMis Feed & Mate, FC is Feed & Care, MC is Mate & Care, FMC is Feed, Mate & Care. Time Horizon =

30, Time Step = 1.

Male Nest state
state
000 100 200 300 130 230 123 120
F B F B F* B* F* B* F B* F* B* F* B* F* B*

1 0.307 FM 0487 FC 0.719 FC 1.083 FC 1.297 FC 1529 FC 1.831 FC 1.021 FC
2 0.335 FM 0.532FMC 0.735 FC 1.054 FC 1.310 FC 1545 FC 1.844 FC 1.034 FC
3 0354 FM 0564 C 0830 C 1.148 C 1464 C 1730 C 2100 C 1.200 C
4 0.387 FM 0617FMC 0847 C 1171 C 1478 C 1747 C 2113 C 1213 C
5 0.407 FM 0649 C 0917 C 1187 C 1549 C 1817 C 2248 C 1348 C
6 0.446 FM 0712 MC 093 C 1213 C 1564 C 1836 C 2263 C 1363 C
7 0.455 FM 0.727 MC 0950 C 1229 C 1617 C 1850 C 2316 C 1416 C
8 0.497 FM 0795 MC 0976 MC 1261 C 1634 C 1872 C 2332 C 1432

9 0.508 FM 0.812 MC 0995 MC 1268 C 1645 C 1884 C 2343 C 1443 C
10 0550 M 0.836 MC 1.019MC 1303 C 1667 C 1911 C 2362 C 1462 C
11 0562 M 0856 MC 1.041 MC 1311 C 1682 C 1917 C 2372 C 1472 C
12 0587 M 0866 MC 1.048 MC 1346 C 1703 C 1945 C 2394 C 1494 C
13 0601 M 0883 MC 1.068 MC 1355 C 1720 C 1953 C 2400 C 1500 C
14 0614 M 0894 MC 1.080 C 1376 C 1727 C 1980 C 2422 C 1522 C
15 0.627 M 0906 MC 1.096 MC 1387 C 1743 C 1988 C 2429 C 1529 C
16 0.636 M 0915 MC 1.106 MC 1398 C 1752 C 2004 C 2450 C 1550 C
17 0646 M 0927 MC 1.115MC 1408 C 1765 C 2013 C 2457 C 1557 C
18 0654 M 0935 MC 1.125 MC 1415 C 1773 C 2022 C 2469 C 1569 C
19 0663 M 0946 MC 1.132 MC 1423 C 1781 C 2030 C 2477 C 1577 C
20 0669 M 0952 MC 1.141 MC 1430 C 1789 C 2036 C 2484 C 1584 C
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Fig. 5. Feed, Mate or Care? In this run, the cost of
mating to offspring survival has been eliminated by
setting g_=1.0. Note that mating in now observed in all
nest states; thus, the parental phase has been elimi-
nated.

the effect of ¢ on our observed parental phase by
varying it £0.1 with respect to its default value. If
q,=1.0, which eliminates any cost of mating to
offspring survival, then we eliminate the parental
phase (Fig. 5). Mating is observed in all levels of
nest state. Alternatively, if ¢ =0.8, which increases
the cost of mating to offspring survival, then
males with one clutch cease courtship after that
clutch is age 2 (Fig. 6), which is one time step
earlier than in the default run (Fig. 4). Thus g has
aprofound affect on van Iersel’s parental phase in
the model; now it would be interesting to examijne
this phenomenon in natural systems. A more
complete analysis of this model in now in prepa-
ration (Sargent et al. unpublished).

4. Discussion

During the breeding season, fishes may improve
their overall fitness by avoiding predators, feed-
ing, mating, and providing parental care for their
offspring. Although each of these behavioural
options is associated with overall fitness, there
may be tradeoffs among fitness components that
constrain a fish’s ability to optimize all of its op-

Feed, Mate or Care? (gm=0.8)
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[: Mate & Care
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Fig. 6. Feed, Mate or Care? In this run, the cost of
mating to offspring survival has been increased by
setting g,=0.8. Note that males with one clutch stop
courting females after that clutch is age 2; in the default
run (Fig. 4), males with one clutch stop courting fe-
males when that clutch was age 3.

tions simultaneously. To explore these tradeoffs,
I constructed a set of three simple, stochastic dy-
namic programming models. The tradeoffs were
built in as behaviour dependent coefficients that
reduce parental and offspring survival, and as
behaviour dependent increments or decrements to
parental energy reserves.

The behaviour dependent survival reducing
coefficients had a large effect on the optimal be-
haviour. If the cost of doing a particular behaviour
is reduced, then the likelihood of that behaviour
being combined with another increases. In the
model Feed or Mate?, as p, or p increases, the
incidence of Feed & Mate increases among the
levels of energy reserves (Fig. 1). Similarly, in the
model Feed, Mate or Care?, as g, increases, the
incidence of Mate & Care increases (Figs 4-0).
These results suggest that ecological factors such
as behaviour dependent predation risk on parents
or offspring may have profound effects on a
parent’s optimal allocation of behaviour in nature.

The parental energy reserve state dynamics
were such that when a parent had maximum en-
ergy, no behaviour depleted the reserves within a
single time step. In all three models, as the level of
energy reserves increases, behaviour thatenhances
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reproduction (i.e. mating and caring) increases,
and behaviour that enhances parental survival (i.e.
feeding) decreases. Thus, with respect to energy
reserves, feeding is traded off against mating and
caring. Mating and caring represent investment in
present reproduction; whereas feeding represents
investment in the future survival of the parent and
offspring.

A third pattern to emerge in those models that
involve parental care (i.e. Feed or Care? and
Feed, Mate or Care?), is that the optimal be-
haviour depends on both offspring number and
offspring age. Basically, I assumed that offspring
survival between time steps is higher with care
than without care, and that both survivals are
independent of offspring number and age. I found
that the incidence of parental care increases with
both the number and age of the offspring. As
offspring number/age increases, feeding decreases,
mating decreases, and caring increases. Thus,
with respect to offspring number/age, mating and
and feeding are traded off against caring. Here
caring represents investment in present reproduc-
tion; whereas, feeding and mating represent in-
vestment in future reproduction. Caring increases
the survival of present offspring; mating is an in-
vestment in obtaining future offspring relative to
those already in the nest; and, feeding is an invest-
ment in parent and offspring survival in future
time steps.

In summary, there are two main conclusions
from these models.

1) With respect to the state of the parent, feeding
is traded off against reproduction, i.e. mating
and caring.

With respect to offspring number or age,
however, mating and caring are traded off
against each other.

[§9]

Overall, I find the analysis of these models to
be very encouraging. They have already provided
insights into the conflicting demands and behav-
ioural options that fishes experience during the
breeding season. Their further analysis, and ex-
perimental tests of their predictions should con-
tinue to be profitable. The main advantage that
these dynamic optimization models have over
their static precursors (e.g. Sargent & Gross 1986),
is that they explicitly address the time dependence
in parental energy reserves, offspring number,

and offspring age. Thus, we can investigate opti-
mal behavioural trajectories, rather than limit
ourselves to optimal solutions that are static in
time. Additional directions for future models
include the following three areas:

1) resource allocation,
2) more realistic parental state variables, and
3) dynamic games.

Resource allocation

Real fishes do not choose from a discrete menu of
behavioural options; rather, they appear to vary
their behaviour continuously (e.g. Sargent & Gross
1986). Mangel & Clark (1986, 1988) provide an
example of a dynamic programming resource
allocation model. Although the analysis of such
models is considerably more complicated than for
the models presented here, dynamic resource al-
location models may well yield new insights into
the diversity of animal behaviour.

More realistic parental state variables

In the models in this manuscript, I assumed that
the level of energy reserves was the only impor-
tant parental state variable, and that the state
dynamics of energy reserves versus behaviour
could be specified by a very simple relationship.
Mangel & Clark (1988) present more complex
models that break down energy reserves into two
components:

1) gut contents, and
2) fat reserves.

The inclusion of this complexity in future models
should yield interesting insights. Moreover, there
isevidence thatbody size is also an important state
variable in fish behavioural and evolutionary
ecology (e.g. Werner & Gilliam 1984, Sargent et
al. 1987). A model that combines energy reserves
with body size, via growth, could be very illumi-
nating.

Dynamic games

The models in this manuscript all assume that
maximizing individual fitness is independent of
what other animals are doing. If the optimal tactic
depends on what other animals do, then the appro-
priate model is a dynamic game. As an example,
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consider female choice in the third model, Feed,
Mate or Care? Using Fig. 4, imagine that a female
has a choice of mating with a male with one clutch
versus a male with zero clutches. The female that
mates with a male with one clutch puts that male
into the parental phase; thus her clutch does not
pay any costs to offspring survival for additional
male mating. On the other hand, the female that
mates with the male with zero clutches does not
put that male into the parental phase; he continues
to attempt to mate. This female’s clutch would
suffer survival costs due to the male’s continued
mating. Thus, a female should prefer the male
with one clutch over the male with zero clutches.
The problem with this scenario, is that we have not
optimized male and female behaviour simultane-
ously. It is possible that female preference for
males with eggs may lead to more mating and less
care by males with eggs, thus thwarting the adap-
tive basis for the female preference. It will likely
require a dynamic game to sort this out.

All of these suggested improvements are much

easier said than done. The problem is di-
mensionality. As we add more biological reality,
we increase a model’s complexity geometrically.
What started as a simple model may suddenly
explode into something intractable. Nevertheless,
as theoreticians develop computational shortcuts,
and as supercomputers become more common-
place, I suspect that we will see more and more
complex models. For the short term, however, I
suggest that simple models such as those pre-
sented here, will provide us with new and valuable
insights, and will stimulate new experimental
research.
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