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We attempted to predict annual fish yield (kg/ha/yr) in four data sets including a total of
390 lakes in Finland, using both water quality variables and variables involving fishing
effort. Measures of fishing effort included gear numbers, gear type and number of
fishermen. Principal component analysis was used to reduce the number of water
quality variables, and to ensure independence of the predictive variables. As a rule,
total fish yield could not be predicted reliably on the basis of water quality. At best,
water quality explained no more than 15% of the variation in annual fish yield, and this
model could successfully be applied to only one sub-area. Fishing effort turned out to
be the most useful predictor, with an explanatory power of 50%. In one data set water
quality explained more of the variation in fishing effort than in annual yield. Using the
catch distribution of individual species in relation to environmental gradients, we
constructed a simple theoretical model for yield vs. water quality. The model showed
the extreme unlikelihood of finding a linear relationship between water quality and fish
yield, because individual species display a bell-shaped distribution around their opti-
mal water quality conditions, and the sum of such distributions likewise is bell-shaped.
Finally, we argue that fishing effort should increasingly be taken into account in the
development of management tools for inland fisheries.

1. Introduction

Managing fresh water fish resources presupposes
knowledge of the kind and quantity of reserves
accessible to those exploiting them. Knowledge
can be gained by direct and continuous monitor-
ing of the target populations (high-effort meth-
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ods). Alternatively, one can resort to indirect
means to assess the quantity and quality of avail-
able resources (low-effort methods). A list of ex-
amples of high-effort methods includes stock/
recruit models (Ricker 1954, Beverton & Holt
1957), surplus yield models (Schaefer 1954, Pella
& Tomlinson 1969), dynamic pool models
(Pitcher & Hart 1982), and time series analysis.
Examples of low-effort methods are the Delphi
method (Zuboy 1981) and a family of regression
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Fig. 1. Prediction of lake-specific fish yield: accuracy
graphed against invested research effort. We explore
the possibility of producing high-accuracy predictions
with low-effort methods.

models in which yield is predicted by character-
istics of a lake (Jenkins 1967, Oglesby 1977,
Sarvala et al. 1984).

High-effort methods provide data on target
populations, and reguire data to be collected for
each single population separately. The resultant
knowledge can further be used for management
programmes tailored on an annual basis at popu-
lation level. In the high-effort methods with their
acquired precision ability to generalise is reduced.
Moreover, with these methods precision is gained
by spreading the effort over many years. This,
however, increases management expenses. The
trade-off between the two methods is not neces-
sarily a trade-off between high and low accuracy
of yield prediction (Fig. 1).

When monitoring resources are in short sup-
ply, an alternative to using high-effort methods
is to make the best use of the other methods.
Potentially, knowledge gained by means of low-
effort methods may be close to that obtainable
with high-effort methods (Fig. 1). When erring
with low-effort models, not much expense in
data collecting is lost. But the error may lead to
loss of the target resource. The prevailing para-
digm among the low-effort methods is that lake-
specific fish yield is a linear function of water
quality (Rawson 1952, Ryder 1965, 1982, Ryder
etal. 1974, Kerr & Ryder 1988).

As a management tool, a model without feed-
back loses its foundation entirely. In the high-
effort models the feedback is innate, while the
low-effort models do not use explicitly any feed-
back. By use of external variables they just aim
at predicting the annual yield as correctly as
possible. Such a prediction can serve in tradi-
tional management of fish resources. Alterna-
tively, the model expressing the relation between
yield and lake water quality can serve as a tool
for environmental monitoring.

This paper addresses the performance of low-
effort methods in predicting annual fish yield in
lakes. We shall limit our discussion to regression
models that use water quality as a predictor. In
doing this we shall follow the tradition initiated
by Rawson (1952) and Northcote & Larkin
(1956). Later, several modifications and surro-
gates of the original plan have been introduced
(Ryder 1965, Jenkins 1967, Hrbacek 1969,
Melack 1976, Oglesby 1977, McConnel et al.
1977, Matuszek 1978, Schlesinger & Regier
1982; among many others).

We shall first concentrate on establishing
possible links — if any exist — between annual
fish yield and water quality. In so doing, data on
fisheries and water chemistry in Finnish lakes
serve as reference material. The performance of
empirical models will be tested on different spa-
tial scales. Secondly, we shall outline a theory
for fish yield and water quality in lakes. The
discussion revolves around total yield viz., pooled
annual yield of all species. This article is a re-
view of our recent research (Lindstrom & Ranta
1988, Ranta & Lindstrom 1989, 1990, 1992, 1993,
Ranta et al. 1992a, b) on the question: Based on
water quality, is it possible to predict lake-spe-
cific fish yield? This review, it is hoped, will ac-
tivate further discussion on this topic.

2. What makes a good prediction model?

2.1. Independency of predictive variables

Before we begin our review in detail, we shall
make some comments on the use of regression
models as prediction tools. Let us denote by Y,
the annual total fish yield (kg fish ha/yr) in a
lake. The entire task of the approach is to find
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Fig. 2. Performance of empirical regression models (Y,
= a + bX) used to predict fish yield in lakes. Because
of smaller residual variance model A is better than
model B. When empirical models are derived from
data originating from lakes of different drainage areas
(a, b, c) the most desirable outcome is a single model
(A) for the separate sets of data. The next best result
is a family of models differing only in their Y, intercepts
(C). That is, models are adjusted for differences in
yield levels among drainage areas. The worst case is
depicted in panel D (is this the real world situation?),
showing entirely different empirical models needed to
characterise relationship between fish yield and pre-
dictor variable(s).

out whether such yield can sufficiently be de-
scribed as a function of one or more characteris-
tics (X,) of a lake. If so, we shall write

Y, =f(X),
or in terms of a linear regression model
Y=a+bX.

Having the data on yield and on predictor
variable(s) for a number of lakes one can unam-
biguously estimate the parameters of the empiri-
cal model (Draper & Smith 1966, Edwards 1985).
However, there is one point of caution. Water
quality (the X; variables) in Finnish lakes, when
described by authorities, is indicated by measur-
ing a number of variables. Many of the variables
are strongly intercorrelated and can therefore not
be used as such to form independent variables in
regression models. Principal component analy-
sis, a multivariate method for overcoming prob-
lems of this type, comes in handy to make linear
combinations of covarying variables. Lake-spe-

cific scores for each principal component are
orthogonal and normally distributed. This makes
them appropriate as independent variables in fur-
ther treatments.

Calculating principal components is an ob-
jective means to find linear combinations of the
original variables. Different affiliations of water
chemistry variables may result in differing linear
combinations of those variables. In our experi-
ence, however, the differences are not that great,
because in Finnish lakes the resulting compo-
nents share elements in common (Table 1).

2.2. Model criteria

An empirical model best suited for management
purposes must have high precision and has to be
generalisable (Fig. 2). If the residual variation

Table 1. Compilation of the outcome of principal com-
ponent analyses run for different sets of lakes and
water quality variables. Variables labelled with the
same character (a, b or c) shared high loadings on the
same principal component (column wise). Rows shar-
ing the same characters indicate that the four different
data sets (A = Ranta & Lindstrom 1990, B = Ranta et
al. 1992a, D = Ranta et al. 1992b, RL = Ranta &
Lindstrém 1993; as discussed in the text) resulted in
closely corresponding principal components. Both the
number of principal components extracted and the
cumulative variance explained are indicated together
with the number of lakes for the four different studies.

Data set
Variables A B D RL
pH a a a a
Alkalinity a a - a
Ca a = a -
K a - - -
Mg a = — -
Conductivity c a a
O, saturation c b a
Colour b b b b
N b b - b
P b b - b
Na b - - -
Chemical O, consumption b = — -
Al - - b -
Lakes 155 70 80 148
Principal components
extracted 3 2 2 2
Cumulative variance
explained (%) 70 77 79 75
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Fig. 3. Three closely located drainage areas (Kemijoki, lijoki and Koutajoki) in Kuusamo commune used to test
whether an empirical regression model derived from Kemijoki data (A) can predict annual fish yield in the two
other drainage areas (B, C). Yield in the Kemijoki lakes (n = 49) is regressed against component scores of the
second principal component (gradient from oligotrophy to eutrophy, as indicated in panel A). In panels B and C,
observed yield is graphed against prediction. It is more than obvious that the Kemijoki lakes model fails entirely to

predict correctly annual fish yield in lijoki and Koutajoki.

between water quality and fish yield is high, or if
the parameter values for each specific set of lakes
differ greatly the empirical models lose much of
their applicability to management problems. Within
a limited geographical area there should be no
more than one empirical model best characterising
the relationship between fish yield and water qual-
ity in any one lake (Fig. 2). The residual errors of
this model should not exceed the model prediction.
At best, the very same model, preferably with no
parameter adjustments, should be applicable to
lakes in limited biogeographical areas (Fig. 2).

3. Fish yield and water quality in Finn-
ish lakes

Our test materials originate from four different
sources (A-D), and we hope that they suffice to
underline our major point.

3.1. Data set A, 155 lakes

Ranta & Lindstrom (1989) examined whether a
yield prediction model can be found for lakes

from three drainage areas (lijoki with 54 lakes,
Koutajoki and Kemijoki with 52 and 49 lakes,
respectively) within an area of about 1000 km?.
Water quality was approximated with principal
components based on 12 original variables (Ranta
& Lindstrom 1989, Table 1). For the present
purposes it suffices to graph fish yield against
lake-specific score values of the second principal
component in the Kemijoki drainage area (Fig.
3A). Here we fitted a linear regression model
between water quality (PC 2; a gradient from
oligotrophy to eutrophy; see Ranta & Lindstrom
1989 for details) and total yield (log transformed).
Though the relationship between the two vari-
ables is far from perfect, it still fulfils the statisti-
cal goodness-of-fit criteria (Y= 0.991£0.04 +
0.04910.02 x X; F, 4, = 4.83, P = 0.033). With
these standards, the regression model thus suf-
fices as a management tool. However, using the
model as a yield-prediction tool for two nearby
drainage areas, lijoki and Koutajoki, clearly
demonstrates that entirely different factors must
be responsible for total fish yield in those lakes
(Fig. 3B and C). In fact, the covariance between
water quality and fish yield in lakes of the three



ANN. ZOOL. FENNICI Vol. 30 ¢ Ranta & Lindstrom: Water quality and fish yield 93

20 r pc1 R2=0.00
L ]
1.5
= " -l.
[ ] : =l.|. :.‘ i
10 - o n g 1
'} ]
e ! -
[ ] ™ LY
[ ] m g " =
05 " -
l. | ]
| ]
;s 0 | 1 |
& -5 -2 1 4
=
o
< N, P, Colour Oxygen
o < >
o
2 2.0
Q g r
- PC2 R2=0.12
| ]
1.5 L
n .:- =
-
[ ] ."ll l‘
1.0 |- myg " g mY
L] [ ]
. - I' »
: e
0.5 - =" e ow "
" | ] -
n
0 | | 1 | | | J
-3 -1 1 3

pH, Alkalinity, Conductivity

<
<

Fig. 4. Ranta et al. (1992a) studied relationship between fish yield and water quality in 70 lakes scattered around
Finland. Two principal components extracted from data on 7 water quality variables retained 77% of the variation
in the original data (Table 1). Graphing yield against lake-specific component scores indicates that water quality,
as measured in terms of lake-specific component scores, does not govern fish yield.

drainage areas is more than confusing. The fol-
lowing tabulation of correlation coefficients
should demonstrate the lack of any pattern (Ranta
& Lindstrom 1989):

Principal components

1 2 3
Tijoki -0.27 0.09 -0.34
Koutajoki -0.04 -0.14 -0.03
Kemijoki -0.39 0.31 —0.06.

These observations suggest that it may be impos-
sible to derive a generalisable prediction model
(based on water quality variables) for fish yield
in lakes of the three drainage areas.

3.2. Data set B, 70 lakes

Ranta et al. (1992b) examined the pattern be-
tween fish yield and water quality in 70 lakes
scattered all around Finland. They set out to seek
a valid empirical relationship, but failed to do so
(Fig. 4). It seems that, again, water quality and
fish yield have little in common. What they found
was that annual fish yield can be predicted if
fishing effort is known. For example, the coeffi-
cient of determination (R?) between yield and
water quality ranged from 0.00 to 0.12 depend-
ing on the principal component (Fig. 4; Table 1),
while for fishing effort (number of fishermen / ha)
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Fig. 5. Fish were trapped with standardised effort from
80 Finnish lakes. Water quality was assessed by de-
termining values of seven water chemistry variables.
The relationship between water quality and total catch
of fish is non-existent (A; the 1st principal component
R? = 0.0, the 2nd principal component R? = 0.0). Ranta
& Lindstrém (1990) divided the lakes into four groups
according to quartile limits of the 1s! principal compo-
nent. A trend towards an increasein averaged fish
catch (vertical bars indicate 95% confidence limits) is
obvious in lakes of the four groups (B). However, the
increase from 6.4 kg to 9.2 kg is due to roach (a fish
not preferred by fishermen) replacing perch.

the corresponding figure was R* = 0.48. Partialling
out fishing effort improved the relationship be-
tween yield and water quality (the first principal
component, partial correlation coefficient = 0.26;
for the second principal component the corre-
sponding value is 0.34).

With this material it became clear that fishing
effort is the best variable governing annual fish
yield. This conclusion also holds for individual
fish species (Ranta et al. 1992b).

3.3. Data set C, 85 lakes

With the third set of data we reached the same
conclusion as with B, viz., fishing effort explains

the yield more than does water quality (Ranta &
Lindstrom 1990). This time the data (a subset of
A) were accurate enough to allow fishing gear-
specific examination. In a forward stepping re-
gression model we attempted to include some of
the 16 original water quality variables. The suc-
cess was poor: for six species not a single vari-
able was powerful enough to enter into the model.
With perch (Perca fluviatilis L.) the model re-
sulted in to inclusion of water conductivity, but
the fit of the model, to say the least, was low (R?
=0.06). On the other hand, when we began from
a full model including the 16 water quality vari-
ables plus six variables characterising fishing
effort (traps/ha), our success improved. From the
total of 22 variables we removed with a step-
wise elimination method the variables not needed
in the regression model. The results were unam-
biguous: in no case were water quality variables
powerful enough to remain in the model. We
found that variables describing fishing effort were
the determinants of the species specific yield
(Ranta & Lindstrom 1990).

3.4. Data set D, 80 lakes

Finally, Ranta et al. (1992a) examined fish catch
and water quality in yet another set of Finnish
lakes. Generally, fishing effort and gear may
vary considerably among lakes. Therefore, de-
tection of any relationship between water quality
and fish catch may be hampered. To avoid this
bias, fish in the study by Ranta et al. (1992a)
were trapped with a standardised effort. Thus,
instead of fish yield, with these data we are deal-
ing with catch per unit effort, which is a measure
of fish biomass.

Graphing the total catch against the first prin-
cipal component suggests no relationship what-
soever between these variables, r=0.06 (Fig. 5A;
the same is true for the second principal compo-
nent, r = 0.04; Table 1). We do not, however,
wish to say that water quality has no effect on
fish catch at all. When the score values of the
first principal component are split into four groups
according to quartile values, a clear pattern
emerges (Fig. 5B). The total catch is obviously
affected by water quality, but this relationship
does not help us very much in predicting lake-
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specific fish catch. Another complication, in fish
resource management terms, is that the increase
in the total catch is due to roach (Rutilus rutilus
L.), a species not valued highly by Finnish fish-
ermen.

In conclusion, after searching for any rela-
tionship between fish yield and water quality in
390 Finnish lakes we have repeatedly failed.
Therefore we are inclined to say that data on this
relationship are difficult to obtain. Against this
background we felt rather well motivated to seek
theoretical reasons why annual fish yield and
water quality are not linearly related, as argued
in the MEI-models.

4. Theory on fish yield vs. water quality

The idea behind the approach which uses water
quality as the predictor of fish yield is straightfor-
ward. Because nutrient levels and element balance
affect the productivity of any lake ecosystem, the
expectation then is that the harvestable proportion
of a local fish stock is a function of lake productiv-
ity. Therefore, one expects water quality to reflect
the level of annual fish yield in lakes.

As shown above, we have had poor success
in finding proof for any linear relationship be-
tween water quality and fish yield in Finnish
lakes (Lindstrom & Ranta 1988, Ranta &
Lindstrom 1989, 1990, Ranta et al. 1992a, b).
This conclusion holds equally as well on a local
and a regional scale as it does for total yield and
for individual species (Ranta & Lindstrom 1989,
1990, Ranta et al. 1992b). In our explorations,
fishing effort has turned out to be far more rel-
evant in affecting fish yield than is water quality
(Ranta & Lindstrom 1990, Ranta et al. 1992b).
Even with a data set in which the fishing effort
was initially kept constant we did not succeed
(Ranta et al. 1992a).

In what follows we shall explore theoretical
grounds for the relationship between fish yield
and water quality. Also, we shall concentrate on
the likelihood of finding indications of a linear
relationship between the two variables. This
theme has originally been explored by Ranta &
Lindstrom (1993).

Water quality forms an environmental gradi-
ent. Such a gradient could range from oligotrophy
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Fig. 6. (A) Frequency distributions of yield of five hypo-
thetical fish species a, b, ¢, d and e (broken lines) as
function of an environmental gradient. For each spe-
cies the modal peak of the bell-shaped curve indicates
conditions under which highest yield is obtainable.
The spread of the curve reflects species-specific toler-
ance. The environmental gradient covers the range of
occurrences of the species. Assuming that each spe-
cies is trapped in proportion to its occurrence along
the gradient, total yield is the pooled sum of individual
species. The theoretical expectation for the total yield
is indicated by the solid line. — (B) Expected total yield
as function of environmental gradient: The environ-
mental gradient is measured in terms of the second
principal component. Negative score values indicate
high alkalinity and conductivity, and low oxygen;
whereas positive scores indicate low ionic concentra-
tions and good oxygen conditions. The expectation is
calculated by using yield data for the eight fish species
as indicated by Ranta & Lindstrém (1993).

to eutrophy, or from acid waters to high-pH lakes,
or include a linear combination of several vari-
ables. We assume that different fish species have
differing requirements regarding water quality.
They show decreasing population sizes distrib-
uted around their individual optimum values (Fig.
6A). Different species have these optimal condi-
tions for existence in different points along this
gradient. Some species are restricted to narrower
ranges than others (Ranta & Lindstrém 1990).
We further assume that the optima for different
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Fig. 7. Frequency distributions of linear correlation coefficients, |, between total fish yield and the environmental
gradient (c.f., Fig. 6A). Graphs are based on 1000 simulations run separately for assemblages of 5, 10, 15 and 20
species. In the simulations species were randomly assigned the following parameter ranges of the Gaussian
function: p [-2 — 2], 6 [0.5-2], Y, [0.1-4]. More details in text.

species are independent of each other. Under
these conditions the distributions can be conven-
iently described with bell-shaped Gaussian
curves. The reasoning below can easily be gen-
eralised to a multi-dimensional space. For clarity
of argumentation, however, we shall restrict
ourselves to a one-dimensional presentation.

The Gaussian function can conveniently be
described by three parameters: the mode (u; in-
dicating the position of the curve along the gradi-
ent, X), the spread of the curve (o, in units of
standard deviation) and the maximum value (Y,).
The parameter Y, is a combination of many fac-
tors. Fish species differ in terms of population
sizes. Some species are target species for fisher-
men, whereas other species are more a by-catch.
Some species are trapped with very effective
gear, such as the drag seine. Fishing effort and
efficiency therefore are likely to vary among the
species. It seems to us that the parameter Y, is very
hard to break down into components. Presently it
suffices to know that it encompasses much of the
basic biology of the fish species as well as the
behaviour of fishermen attempting to catch the
species as efficiently as possible.

By using the Gaussian curve the yield (Y) of
a species along the environmental gradient is

X - u)z)

Y =Y ex -
0 p[ 20°

Assume now that species in a target lake
contribute to the total yield according to their
Gaussian functions. Under these conditions, the
expected total yield is the sum of the yields of
the individual species along the gradient. Some
support for this is found in the data of Ranta &
Lindstrom (1993, Fig. 6B).

Note that the resulting function of the ex-
pected total yield is not linear. The shape of the
total yield graph depends on the spacing and
spread of the species-specific responses. With
aggregated component curves a multi-modal and
often skewed total yield function follows (Fig.
8). Only if the individual species are located
randomly along the gradient will the yield func-
tion be a unimodal bell-shaped curve.

This approach suggests that linearity between
water quality and fish yield is hard to attain. To
examine this further we made the following
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highest correlation coefficients between total yield functions and water quality in the simulations for Fig 7. Vertical
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Monte Carlo simulation. Four sets of imaginary
species, with 5, 10, 15 and 20 species in them,
were chosen. Each species was randomly as-
signed values of u (range -2 — 2), 0 (0.5-2) and
Y, (0.1-4). The parameter ranges were selected
according to data in Ranta & Lindstrom (1993).
These figures were then used to generate Gaussian
curves. The total yield was calculated as a pooled
value of the component functions for the whole
gradient. A linear correlation coefficient was then
computed between the total yield and the gradi-
ent. For each of the four sets of species the pro-
cedure was repeated a total of 1000 times.

Based on the simulations we conclude that
high linear correlation coefficients are rare be-
tween total yield and the environmental gradient.
Increasing the number of species lowers correla-
tion coefficients between the two variables (Fig.
7). Consequently, the likelihood of finding a lin-
ear relationship between fish yield and water
quality in lakes is very low.

The present model suffices to outline a theoreti-
cal foundation showing why the differing sets of

lake and fishery data (Ranta & Lindstrom 1989,
1990, Ranta et al. 1992a, b) failed to disclose linear
relationships between fish yield and water quality.
However, for present purposes, we were curious to
see what type of fish assemblages will produce the
highest and produce the lowest correlations be-
tween fish yield and water quality (Fig. 7). Examples
of species “packings” producing the highest corre-
lations in the previous runs are shown in Fig. 8.
From this it is obvious that the highest correlations
are achieved in assemblages with aggregated species
arrangements along the gradient. Another possibil-
ity for truly high correlations is achievable with
truncated responses of species to the environmental
gradient. In such cases only one slope of the total
yield graph (Fig. 8E) is included. However, as cor-
relation between total yield and the environmental
gradient are, as a rule, low (Fig. 7) not much value
should presently be put on data as graphed in Fig. 8.
Low correlations are scored when the total yield
graph is a normal bell-shaped function; this follows
from evenly or randomly placed u values along the
gradient X.
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Expected total yield

Fig. 9. Effect of fishing effort on expected total yield
obtainable along different parts of the environmental
gradient. First, total yield is assumed to follow the
theoretical model of Ranta & Lindstréom (1993). Fur-
ther presume that yield is a non-linear function of effort
so that yield first increases with increasing effort but
starts to decrease (due to overfishing) after reaching a
turning point. Effect of varying effort exemplified by
connecting with a line all lakes with a given value on
the gradient axis.

5. Whither?

The significance of fishing effort complicates
the relation between water quality and total yield.
Assume, for the moment that expected total yield
follows the model (Ranta & Lindstrom 1993) as
described above. General fishing effort models
tell us, however, that increasing effort increases
yield. It is also an established (theoretical) fact
that those models describe the relation between
yield and effort as curvi-linear (e.g., Pitcher &
Hart 1982). That is, with increasing effort the
yield increases until a turning point is reached,
after which increasing effort no longer increases
yield. Rather, the yield starts to decrease due to
overfishing. Merging the effort function into the
yield model results in a revised model, best de-
scribed in three dimensions (Fig. 9).

Again, as in the previous version, lakes with
given environmental characteristics are repre-
sented as points along the environmental gradi-
ent. Let us now examine the model message for
the family of lakes with an identical value on the
gradient X (Fig. 9). These lakes differ in but one
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Fig. 10. Total fish yield in lakes with four differing fish
assemblages (modified after Ranta & Lindstrom 1990).
Differences in total yield are significant in statistical
terms (Kruskal-Wallis, H, = 9.63, P= 0.02), but no dif-
ferences remain if yield of the two species is sub-
tracted (H, = 0.58, P= 0.90), which proves the impor-
tance of highly valued target species.

respect: fishing effort varies. Evidently the yield
obtained varies considerably, as described by the
yield-effort function. Assume that, in the data set
to be used for the search for the relation between
yield and water quality, fishing effort differs
among lakes — even among lakes of similar
nature. The exact values of lake-specific efforts
are, however, unknown to us. This uncertainty,
or lack of knowledge, may considerably increase
residual error around the yield vs. gradient model
(Fig. 9).

The refinement of the basic model further
tells us that even the curvi-linear relationship
between total yield and water quality — as sug-
gested by the model — might be hard to verify
from data of the type usually available. To sum
up our major point: attempting to predict lake-
specific total yield based on water quality is a
futile task, unless the effort level is known for
each lake. For example, in the data analysed by
Ranta & Lindstrom (1989), water quality ex-
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plains twice the variation in fishing effort (R* =
0.20) compared to annual yield (R* = 0.08). One
must remember that in many cases catch statis-
tics is the raw variable used for measuring a
lake’s value in fisheries terms. The variation in
total yield is mainly explained by fishing effort
(e.g., Ranta & Lindstrom 1989, Ranta et al.
1992b), the variable that many of the manage-
ment decisions will directly affect.

As a management implication of our review
we shall suggest that research should be re-di-
rected towards more fruitful issues. Among those,

 the following is particularly relevant: Long-term
experience probably affects the fishing effort that
will be put into various lakes in a certain area.
This includes the number and type of fishing
gear applied. For example, gill nets can be used
almost anywhere in any lake, whereas use of a
drag seine is much more restricted. The opera-
tion of a drag seine requires considerable man-
power, while a gill net can be easily handled by
one person. The use of various fishing gear is
therefore likely to reflect not only the fish assem-
blage but also fishing tradition and the lakes
themselves. All of these, along with the prevail-
ing market situation, contribute to the yield ob-
tained(Fig. 10). Therefore, theirrelevance beyond
fisheries statistics should be acknowledged while
developing tools for predicting fish yield in lakes.
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