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1. Introduction

Since 1924 the regular fluctuations shown by many
animal populations have occupied a central place in
theoretical population ecology (Elton 1924, 1942,
Elton & Nicholson 1942, Siivonen 1948, Moran
1952, 1953, Kalela 1962, Keith 1963, Hörnfeldt
1978, Angelstam et al. 1984, 1985, Hansson &
Henttonen 1985ab, Lindén 1988, 1989, Myers 1988,
Ginzburg & Taneyhill 1994). Certainly, the self-re-
peating dynamics in numbers have a magical spell,

as witnessed by the publishing space allocated to
analyses of long-term records of snowshoe hare and
lynx pelt statistics of the Hudson Bay Company.

The endeavor of the past 50 years has resulted
in several hypotheses to account for cyclic dynam-
ics of animal populations. In short, these include
such factors as sunspot cycles (Elton 1924), epi-
demics (MacLulich 1937), predator–prey and host–
parasite relationships (Moran 1953, Anderson &
May 1978, May & Anderson 1978), lunar cycles
(Siivonen & Koskimies 1955), food quality
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We show that sustained population oscillations do not necessarily stem from the dynamic
properties of a population, or from periodic environmental fluctuations. In particular, we
demonstrate that population fluctuations may be sustained by random non-cyclic environ-
mental disturbances. These perturbations reduce breeding success in otherwise stable
populations with overshootings in their transient dynamics. When the transition phase from
non-equilibrium to equilibrium states is slow, as compared with the frequency and strength
of the random fluctuations, and includes overshootings, the dynamics may show fluctuating
patterns that are hard to tell apart from regular fluctuations. Population dynamics which
include overshootings during transient phases are common in a large variety of population
models. As a specific example, we consider the effect of delayed density dependence in a
Ricker type model. However, to show that the process can be generalized to different types
of models, we also use a nonlinear autoregressive model containing density dependence.
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equilibrium x is

a1 + a2 <  0. (5)

In this paper we consider population dynamics
for which the equilibrium population size eq. (4) is
locally asymptotically stable (e.g. Edelstein-Keshet
1989). In particular, we show that population dy-
namics, which would stabilize and ultimately con-
verge to the equilibrium level eq. (4) in the absence
of environmental or other disturbances, may show
sustained periodic oscillations when reproduction
is vulnerable to failure or perturbations of variable
intensity at random time intervals. We use auto-
correlation analysis to characterize the population
cycles and show that the autocorrelation functions
may suggest strong periodicity in randomly per-
turbed populations. The most interesting feature
here is that the length of the periods generated by
random perturbations may easily extend to years.

The stability properties and the dynamic behavior
of the deterministic non-delayed (a2 = 0) Ricker type
population dynamics eq. (2) has been analyzed by
May (1976). In particular, the population dynamics
is stable for r < 2, periodic for 2 < r < 2.5, and dou-
ble periodic and eventually chaotic for r > 2.5. Note
that the stability conditions are independent of a1.
The equilibrium level x under delayed density-de-
pendent dynamics eq. (1), eq. (2) is locally asymp-
totically stable if (Appendix A)

2 > 1 – a2 x > |1 + a1 x |. (6)

The stability area is illustrated in the (a1, a2)-space
in Fig. 1 for r = 0.9 (for details, see the Appendix A).

3. Random perturbations

We next extend our model to include random
perturbations reducing reproductive success of the
population at random time intervals. We modify
the original population dynamics model eq. (1)
by rewriting it as

x(k  + 1) =  µ(k)x(k)F(x(k), x(k – 1)), (7)

where µ(k) is a random survival factor at time k.
The survival factor is subjected to perturbations
characterized as follows. The probability of a per-
turbation, i.e. µ(k) being less than one, at time k is
denoted as p (0 < p < 1), in which case µ(k) takes
its value from a random distribution. In most of

(Lauckhart 1957), and self-regulation (Chitty
1960). Yet, the causes of periodic population dy-
namics are one of the persisting mysteries in ani-
mal ecology (Royama 1992).

In studies attempting to explain population cy-
cles with environmental disturbances, the pertur-
bation agent has been assumed to continuously
affect the target population (e.g. Johnson et al.
1986, Townsend et al. 1990, Royama 1992). That
environmental disturbances need not act continu-
ously is the subject of this study.

With the help of a model containing nonlinear
delayed density dependence, we shall demonstrate
that random perturbations affecting reproductive
success may cause sustained and regular oscillations
in otherwise stable populations. We consider delayed
density dependence and failures in breeding to be
frequent in natural populations, and suggest that
rather simple phenomena might frequently be the
cause of documented cyclic dynamics. This is ex-
emplified by an excellent match between a simula-
tion model and Black Grouse Tetrao tetrix data in
south-western Finland between 1897–1930.

2. Delayed density dependence

Consider an animal population in which the den-
sity dependence is delayed. Let x(k) denote the
population size at time k. The population dynam-
ics is given as (e.g. Turchin 1990)

x(k  + 1) = x(k)F(x(k), x(k – 1)) (1)

where F(x(k), x(k – 1)) denotes the density-de-
pendent per capita reproductive success.

We assume here in particular that the popula-
tion renews itself according to a delayed Ricker-
type relationship (Ricker 1954) as follows:

F(x(k), x(k – 1)) = exp(r + a1x(k) + a2x(k – 1))(2)

where r is the intrinsic rate of increase, and a1, a2

are constant parameters.
The equilibrium population level satisfies

x(k) = x(k – 1) = x for all k. Thus, we have

1 = F( x , x ) =  exp(r + (a1 + a2) x ), (3)

from which we obtain

x
r

a a
=

+
– .

1 2

(4)

Thus, a condition for the positiveness of the
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Fig. 1. The arrows below line A denote the area in which
the population equilibria levels are positive (see eq. 5).
When r = 0.9 the stability area in the (a1, a2)-space is
the sector defined by the conditions:
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(defined by line B), and a2 < – 10a2 (defined by line C,
see the Appendix A).

our simulations the probability of such perturba-
tion is p = 0.05 meaning that a substantial failure
in reproduction occurs, on average, once in 20
years. The values of µ(k) are evenly distributed
on [0.4, 0.6] for each k.

Let us next illustrate the dynamic properties of
eq. (7) by simulating the case in which a2 = – 0.1, r =
0.9, and a1 obtains different values (but see Kaitala et
al. 1995). When the value of a1 increases along the
line a2 = – 0.1 from – ∞ to 0.01, magnitudes of the
eigenvalues, characterizing the stability properties of
the deterministic dynamics system (µ(k) = 1 for all k),
are less than one. This means that the population dy-
namics system is locally asymptotically stable for all
a1 ∈ (– ∞, 0.01). For large negative values of a1 con-
vergence of the population size back to equilibrium
level occurs without observable oscillations (Fig. 2A).
Specifically, we have a1 = – 0.4, and x = 1.8, and the
magnitudes of the complex eigenvalues are |λ1,2| = 0.42.
The convergence after random perturbations back to
the equilibrium level occurs quickly. Autocorrelation
analysis does not suggest the presence of periodicity in
the dynamics (Fig. 2a).

The magnitudes of the eigenvalues remain less
than one for all a1 < 0.01 implying that the equi-
librium population level is locally asymptotically
stable. However, when the non-delayed density
dependence becomes weaker and delayed density
dependence remains strong, that is, the value of
a1 increases, magnitudes of the eigenvalues be-
come larger, and the convergence to the equilib-
rium level begins to show signs of oscillations.
Fig. 2B illustrates the case in which a1 = – 0.1,
and |λ1,2| = 0.67. Visible overshootings are ob-
served during the convergence of the population
level after random perturbations. However, auto-
correlation analysis does not suggest periodicity
in the population dynamics (Fig. 2b).

The next phase is to continue decreasing the sta-
bility of the population dynamics (e.g. by increasing
further the value of a1). However, this is done so that
the equilibrium population size remains asymptoti-
cally stable. Then the convergence back to the equi-
librium population level shows increasing patterns
of oscillations. In particular, the overshootings be-
come larger and the convergence back to the equi-
librium level becomes slower (Fig 2C; a1 = 0.005).
The magnitudes of the eigenvalues are |λ1,2| = 0.97,
and convergence of the population level after random
perturbations show clear oscillations. Because the fre-

quency of the random fluctuations is high as com-
pared to the rate of convergence, autocorrelation analy-
sis suggests periodicity in the population dynamics
(Fig. 2c). In this particular example the statistical
analysis shows that the population cycles are 6–7 years.

We next show, for the purposes of comparison,
an example of unstable population dynamics. Let
a1 = 0.015. Clearly, the pair (a1, a2) is now located
outside the stability area illustrated in Fig. 1. The
magnitudes of the eigenvalues are now |λ1,2| = 1.03.
The patterns of population fluctuations or the
autocorrelation results (Fig. 2D) do not seem to dif-
fer critically from those presented in Fig. 2C. A closer
look at the results reveals, however, some qualita-
tive differences. First, when the population comes
close to the equilibrium level, the population shows
increasing amplitude fluctuations. This is due to
population dynamics converging towards a periodic
attractor. Second, the autocorrelation function
(Fig. 2d) reveals periodicity slightly stronger than
in Fig. 2c. However, it may be very difficult to de-
tect either of these differences in data statistically.
Furthermore, this example shows that the qualita-
tive difference between stable and unstable popula-
tion dynamics may be very faint in the presence of
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Fig. 2. Population dynamics (graphs A–E) 120 generations (selected at random after at least 3 000 generations of
simulations) subject to random perturbations in reproductive success. The small panels (a–e) on the right graph
autocorrelation functions for the corresponding time series on the left-hand panels (based on a sample of 500 final
generations). Graphs A–D obey eq. (7) with a Ricker-type population model eq. (2). The parameter values are as
follows: — A: r = 0.9, a1 = – 0.4, a2 = – 0.1, and the magnitudes of the eigenvalues are |λ1,2| = 0.42. —  B: r = 0.9,
a1 = – 0.1, a2 = – 0.1, and |λ1,2| = 0.67. — C: r = 0.9, a1 = 0.005, a2 = – 0.1, and |λ1,2| = 0.97.  — D: r = 0.9, a1 = 0.015,
a2 = – 0.1, and |λ1,2| = 1.03. — E: Simulated population dynamics of eq. (8) subject to random perturbations. The
probability of a random perturbation is 0.1, parameter values used were a1 = – 0.0732 and a2 = – 0.8819. The
superimposed data are 1897–1930 Black Grouse dynamics from south-western Finland.
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environmental perturbations. Care should be taken
when one attempts to tell whether population cycles
are due to environmental uncertainty or due to in-
herently unstable population dynamics.

Relative stability of population dynamics can be
further clarified by studying the route from stability
to instability. Fig. 3 illustrates the path of the com-
plex eigenvalues as parameter a1 increases continu-
ously from – 0.4 to 0.01. Note that the corresponding
eigenvalues are complex conjugates resulting in two
symmetric curves in the complex plane. Clearly, the
eigenvalues are all situated within the unit circle in
the complex plane indicating that the related popula-
tion dynamics are locally asymptotically stable. The
eigenvalue path crosses, however, the unit circle at
a1 = 0.01, and the population dynamics become peri-
odic. The corresponding phase angle, θ, approximates
the periodic properties of the population dynamics
close to a1 = 0.01. In particular, the length of the pe-
riod in the population dynamics is 2π/θ, which at a1

= 0.01 is 6.36 units of time. Thus, the transition from
stability to instability does not occur here through the
“usual” period-doubling route. Instead, the transition
from stability to instability occurs through the
quasiperiodic route (Rohani et al. 1994). In other
words, the population dynamics undergo a bifurca-
tion from a stable equilibrium into oscillations in
which the period generally differs from two time units.

4. Grouse dynamics — an example

Recently we have been performing extensive analy-
ses of  long-term dynamics in Finnish populations
of Capercaillie, Black Grouse and Hazel Grouse
(Lindström et al. 1995, 1996, Ranta et al. 1995).
The three species display both cyclic and synchro-
nous fluctuations in Finland. An analysis of the
long-term data reveals that the population dynam-
ics in the three species better fits to a second-order
nonlinear autoregressive model than to a Ricker
type model (Lindström 1996). One such  model is:

x k x k
x k x ka a

( ) ( )exp –
( ) ( – )

.+ = 





1 1
1

11 2
(8)

This is the eq. (2.20b) by Royama (1992:62)
written to be structurally equivalent with the Ricker
model eq. (2). For the algebra see Appendix B. With
the grouse data (Lindström 1996) it turns out that
the fitted values of a1 and a2 fall into the region yield-

Re 

Im 

θ 

Fig. 3. As parameter a1 increases along the line a2 = – 0.1
from – 0.4 to 0.01 the eigenvalues change continuously
forming a symmetric pair of paths in the complex plane.
The eigenvalues are situated within the unit circle
implying that the population dynamics are locally
asymptotically stable for all a1 in [0.4,0.01]. The
eigenvalue paths cross the unit circle at a1 = 0.01
indicating a transition from stability into instability. The
population dynamics becomes periodic and the length
of the period in the population dynamics is 2π/θ, which
at a1 = 0.01 is 6.36 time units.

ing damped cycles. That is, in the initial phases
populations obeying eq. (8) with the grouse param-
eters display cyclic periodicity but the amplitude
gradually levels off (Royama 1992). To exemplify
that the periodic oscillation (Fig. 2C, D), as achieved
by perturbing eq. (2) is not the property associated
with the Ricker model only, we merged the eq. (8)
into the eq. (7) using grouse parameter values for a1
and a2. When the dynamics is perturbed after eq. (7)
with µ(k) from [0.4, 0.6] and p = 0.1, a clearly cy-
clic dynamics (Fig. 2E) is achieved with a period of
6 years (Fig. 2e).

We next superimposed 34 years of data on Black
Grouse dynamics between 1897–1930 in south-west-
ern Finland. The location of the grouse data was se-
lected by eye for matching synchrony. The original
data are from Siivonen (1948) but are detrended here.
The match between the two data sets is exception-
ally good (Black Grouse a1 = – 0.256, a2 = – 0.273;
simulated data for the matching 34 yr. time period
a1 = – 0.269, a2 = – 0.285), as also witnessed by al-
most identical autocorrelation functions derived from
the simulated and from the grouse data (Fig. 2e).
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Thus, we shall conclude that the process, as described
with eq. (8) and eq. (7) is capable producing long-
term population dynamics as observed with the Black
Grouse.

5. Discussion

We have shown that random perturbations which
lower reproductive success may cause and main-
tain periodic oscillations in otherwise stable
populations. This finding is intriguing in its degree
of parsimony. Earlier studies concerning
perturbations and periodic oscillations have either
suggested the external effects occur with random
strength, but perpetually (Moran 1953, Townsend
et al. 1990, Royama 1992) or in a cyclic manner
(Elton 1924, Siivonen & Koskimies 1955, Johnson
et al. 1986, Sinclair et al. 1993). Our approach dif-
fers from these in two ways. First, our view is that
natural populations are adapted to their environ-
ment, i.e., they can tolerate a certain amount of
external disturbance without this coming an effect
in the behavior of the population dynamics. Con-
sequently, we think that the external effects are
more likely to seriously affect the reproductive suc-
cess every now and then than every year. Second,
the mechanism leading for cyclic oscillations here,
does not call for cyclic perturbations.

Moreover, it has been theoretically shown by
Royama (1992) that the order of density depend-
ence is expected to be commonly found as second-
order in natural populations, i.e., delayed density
dependence. There is also strong empirical evidence
arising from different taxa for the existence of  de-
layed density dependence (Turchin 1990, Fryxell
et al. 1991, Hörnfeldt 1994, Lindström 1996).

Unifying these aspects, random perturbations and
delayed density dependence, in population dynamics
quite easily leads to sustaining oscillations. This was
realized for the first time as early as 1959 by George
Leslie (Leslie 1959), but the time lag in the density
dependence of his model was achieved by the age
structure of the population. Since the time lag also
varied from age group to age group, this is rather com-
plicated, and not necessarily biologically intuitive
approach, which may explain why Leslie’s idea has
not been widely recognized. Our results show, how-
ever, that the core of the idea is much simpler.

It is important to notice that our characterization
of the random perturbation does not lead to the need

of identifying the actual perturbation factor in na-
ture. As a matter of fact, we find this kind of attempt
largely futile. There is no reason to believe that the
factor is — or should be — the same every time. It
can be a given weather factor now and predation
pressure next time; this kind of list can be extended
infinitely. We neither want to exaggerate nor under-
rate our finding. It would be unrealistic, for instance,
to deny the possibility of predator–prey relationship
in explaining the origin of periodic oscillations.
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Appendices

Appendix A: Stability analysis of eq. (1), eq. (2)

We characterize here the model parameters a1, a2 and r for
which the population dynamics (eq. (1), eq. (2)) is locally
asymptotically stable. For the purposes of the stability analy-
sis we rewrite (eq. (1), eq. (2)) as

x1(k + 1) = x1(k)F(x1,x2), (a1)

x2(k + 1) = x1(k),

where x1(k) = x(k), x2(k) = x(k – 1), and F(x1,x2) = exp(r
+ a1x1(k) + a2x2(k)).

The linearized approximation of eq. (1), eq. (2), which
determines the local stability properties of the population
dynamics, is given as (e.g. Edelstein-Keshet 1989)

N k
N k a x a x

N k
N k

2

1 1 2

2

1

1
1

1 0
1

( )
( )

( )
( ) ,+

+ +( ) = ( )( ) (a2)

where xi(k) = x + Ni(k), and Ni(k) is the deviation of the ith
component from the equilibrium level (i = 1, 2). The char-
acteristic equation of eq. (8) becomes (e.g. Caswell 1989)

λ2 – (a1 x + 1)λ – a2 x = 0. (a3)

The eigenvalues are either both real, or complex conju-
gates of the form λ1,2 = α ± iβ.

The equilibrium level x  is locally asymptotically sta-
ble if the magnitudes of both eigenvalues are less than 1. In
this case both roots will have magnitude less than 1 if

2 > 1 – a2 x > |1 + a1 x |. (a4)
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Recall also inequality eq. (5).
The stability conditions eq. (a4) are applied in the case

illustrated in Fig. 1 as follows. We have r = 0.9. Inequality
eq. (5) implies that the parameter values under study are
below the line a1 + a2 = 0. When r < 1, condition 1 > – a2 x
is rewritten as:

a
r

a2 1

1
1

<
–

.

Thus, the stability area is restricted by a2 < – 10 a1. When 1
+ a1 x  > 0, then 1 – a2 x  > |1 + a1 x | is satisfied for all a1 and
a2 satisfying eq. (5). When 1 + a1 x < 0  the stability area is
restricted by:

a
r

r
a a2 1 1

2
2

1 1
2 9

<
+

=–
–

.

.
.

As a whole, for r = 0.9 the stability area in the (a1, a2)-space
is the sector defined by the conditions a2 < – 10a1 and

a a a2 1 1

1 1
2 9

0 38< ≈–
.
.

– . .

Appendix B: Deriving eq. (8)

The autoregressive time series model used by Lindström et
al. (1995b) to analyze long-term data on grouse population
dynamics in Finland is

R(k) = X(k+1) – X(k), (b1)

where X(k) is the logarithm of the population size and R(k)
is the logarithmic growth rate of the population at time k.
The nonlinear autoregressive time series model assumes
that (Royama 1992)

R(k) = 1 – exp (–a1X(k) – a2X(k – 1). (b2)

Denoting X(k) = ln x(k), we have

x(k + 1) = x(k) exp (R(k)))
= x(k) exp (1 – exp (– a1 ln x(K) – a2 ln x(k – 1)))
= x(k) exp (1 – exp (– a1 ln x(K) – a2 ln x(k – 1)))

= x(k) exp (1 – exp (ln (x–a1 (k)x–a2 (k – 1))), (b3)

which simplifies to eq. (8).


