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Introduction

Fluctuating asymmetry has recently become a sub-
ject of much theoretical and empirical interest as
well as causing considerable discussion (Houle
1997, Leamy 1997, Markow & Clarke 1997, Møll-
er & Thornhill 1997ab, Palmer & Strobeck 1997,
Pomiankowski 1997, Swaddle 1997, Whitlock &
Fowler 1997). This interest has been nurtured by
results indicating that fluctuating asymmetry is
caused by stress factors operating on the devel-
opmental system (Van Valen 1962, Palmer &
Strobeck 1986, Parsons 1990, 1992), and thus may
be a potential indicator of the amount of stress
imposed upon a given population, or conversely,
the ability of individuals to cope with stress dur-
ing their ontogeny.

As all other estimators, measurements of fluc-
tuating asymmetry are affected by measurement
error (e.g. Palmer & Strobeck 1986, Swaddle et
al. 1994, Merilä & Björklund 1995). This is par-
ticularly serious in the case of fluctuating asym-
metry since, by definition, it is expected to take
on very small values. It has previously been shown
(Swaddle et al. 1994, Merilä & Björklund 1995)
that the most commonly used measure of fluctu-
ating asymmetry, i.e. the absolute difference be-
tween the sides (|R–L|), is highly sensitive to meas-

urement error. While the fact that this measure is
prone to high measurement error has been known
for some time, the reason and its possible impli-
cations have not been examined. Furthermore, on
the basis of our results we think that measure-
ment error is a very important issue that has been
largely overlooked in the discussion.

Theory

In this note, we will give an explanation based on
basic statistical theory why both the signed and
the unsigned difference measures are so sensitive
to measurement error. By doing that, we will use
the approach taken by Whitlock (1996) with a slight,
but very important modification. Generally, fluc-
tuating asymmetry (FA) is defined as random de-
viations from perfect symmetry of bilateral traits
among a set of individuals (Palmer & Strobeck
1986). Random in this case means random in re-
lation to side, either the left or the right side being
larger, while the mean on average is zero. Thus, it
is clear that FA is a population measure of indi-
vidual asymmetry. FA can be expressed as the
signed difference of the sides (L–R) or the un-
signed (absolute) difference among the sides (|L–R|).
If we assume that the measurements of each of
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the sides follow a normal distribution the vari-
ance of the signed difference is given by:

σ L– R
2 = σ L

2 + σR
2 – 2ρL, Rσ LσR (1)

where ρL, R is the correlation between sides, and
σ L

2 , σ L  is the variance and the standard deviation
of the left side, respectively. Note that only if the
correlation is zero the variance equals σ L

2 + σR
2 ,

as in Whitlock (1996), otherwise the variance is
smaller. This can easily be seen if we set the cor-
relation to 1.0 (eq. 1). In the case of bilateral traits,
the correlation is always larger than zero, and in
most cases close to 1.0, which makes the vari-
ance of the signed difference small compared with
the variance of the sides.

The variance of the unsigned difference is even
smaller and is given by:

σ L– R
2 = 2σ L– R

2 π – 2
π

≈ 3
4

σ L– R
2 (2)

(Whitlock 1996; the approximation is quite rough
and should be regarded more as a rule of thumb).
In the following we will make the simplifying
assumption that σ L

2 = σR
2 = σS

2 . This simplifies eqs.
(1) and (2) to:

σ L– R
2 = 2σS

2 1 – ρL, R( ) (3)

σ L– R
2 = 4σS

2 1 – ρL, R( ) π – 2
π

(4),

respectively. This makes it is even more clear that
as the correlation increases, the variance de-
creases.

Estimates of variances contain two parts,
namely the true variance σ true

2  as well as some er-
ror variance, σerror

2 , due to imprecise measure-
ments, and thus σ total

2 = σ true
2 + σerror

2 . To see why
the two measures of FA potentially can give high
levels of measurement errors, we define meas-
urement error (ME) as:

ME = σerror
2

σerror
2 + σ true

2
(5)

where both variance components are derived from
a one-way ANOVA as described by Bailey and
Byrnes (1990). Thus, measurement error is ex-
pressed as a proportion of total variance. The vari-
ance of the FA-estimates is given by eqs. (3) and

(4), while the error variance can be derived in the
same way as in eq. (1), but with one very impor-
tant exception: errors are not (and should not be)
correlated between the sides. Thus, the error vari-
ance is simply the sum of the error variances of
the sides. Assuming equal errors on both sides,
using eqs. (3) and (4), in eq. (5) we obtain:

MEL– R = σerror
2

σerror
2 + σS

2 1 – ρL, R( ) (6)

ME L– R = σerror
2

σerror
2 + 2σS

2 1 – ρL, R( ) π – 2
π

(7).

From eqs. (6) and (7) it can easily be seen that as
the correlation between the sides increases, i.e.
asymmetry decreases, the proportion of total vari-
ance measured that is due to measurement error
rapidly approaches 1.0. When there is no asym-
metry, all variation is due to measurement error.
This means that in traits which are only slightly
asymmetrical, the problem with measurement er-
ror becomes prominent and needs special atten-
tion.

Since the variance of the unsigned difference
is smaller than the variance of the signed differ-
ence (eq. 2), the problem will be even larger with
this measure, as has previously been observed
(Merilä & Björklund 1995). It is of paramount
importance to notice that the ME of the signed or
unsigned difference is not the simple sum of the
ME’s of the sides. As is obvious from eqs. (6) and
(7), the situation is more complex.

It is also important to notice that the mean (M)
is related to the variance:

M L– R =
2σ L– R

2

π – 2
= σ L– R

2
π – 2

≈ 4
3

σ L– R
(8)

(Whitlock 1996). Consequently, if the variance is
inflated due to measurement error, so will be the
mean value, too. Thus, if measurement error of
the sides is 5%, and the correlation is 0.95 be-
tween the sides (i.e. a low degree of FA), then the
measurement error of the FA-variance is in order
of 50%. If the observed variance of FA is 1.0,
then the true variance is only 0.67. The true mean
will be 1.09, whereas the observed mean will be
1.33, i.e. a 22% overestimation. This has great
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importance when comparing traits with regard to
amount of FA, since the mean value will increase
with the amount of measurement error. Thus, a
trait with an observed larger mean FA can have
so as a consequence of it having larger measure-
ment error, and not necessarily because its true
value of FA is higher. In all studies comparing
mean levels of FA or variances it is imperative
that the influence of ME is cancelled out. As ar-
gued before, the best way of doing that is to use a
mixed model two-way ANOVA, which provides
an unbiased (relative to measurement error) esti-
mate of FA (Palmer & Strobeck 1986, Merilä &
Björklund 1995).

Note that if errors are somehow positively cor-
related, i.e. there is a systematic bias in the way
the traits are measured, the error variance term
decreases (compare eq. 1), and the estimate of the
measurement error is deflated to some degree. This
means that small values of measurement error can
be obtained, which is only a result of biased meas-
ures. This, again, is a serious argument against
using this measure of FA.

Repeatability and coefficient of varia-
tion (CV)

Another way of looking at this is to examine the
repeatability (R) of FA-measures, defined as:

R = 1

1 + 1 + 1
CV2







π – 2
2

+ σerror
2

σ L– R
2

(9)

where CV = σ L– R
2 / M L– R

2 (Whitlock 1996). Note
that the mean is just a constant times the variance
(eq. 8), and thus CV is also a constant, CV =

π – 2( ) / 2  (also noted by Houle (1997) and Po-
miankowski (1997)). This reduces (9) to:

R = 1

1 + π
2

+ σerror
2

σ L– R
2

≈ 1

2.57 + σerror
2

σ L– R
2

(10)

This means that the maximum repeatability that
can be found is 1/2.57 ≈ 0.39. This is only about
60% of the value reported by Whitlock (1996),
but he assumes CV to take all values when it is
really a constant. If measurement error on the FA

estimate is 50%, which it very well can be, then
repeatability is 1/3.57 ≈ 0.28.

The fact that CV is a constant and approxi-
mately equal to 0.76 allows us to evaluate figures
recently published. In table 1 in Whitlock (1996)
we find values ranging from 0.56–6.3, and while
those reported by Møller and Höglund (1992)
ranged from 1.3 to 9.5. In relation to the expected
value these values correspond to a slight underesti-
mation (– 25%) to huge overestimations (+ 1 250%)!
In fact, 28/30 of the values presented in Whitlock’s
table 1 and all of the values presented by Møller
and Höglund (1992) are overestimates, in the
former case on average by 233%, and in the latter
on average by 526%. It can be argued that since
both the mean and the variance are inflated by
measurement error, this will cancel out when us-
ing CV. However, since the variance increases
more with increasing measurement error than the
mean, then CV increases with increasing meas-
urement error. This clearly illustrates that the vari-
ance of FA as reported in these studies is seri-
ously biased by measurement error. Unfortunately,
data on ME is not given in the papers cited. Whit-
lock’s (1996) own data on Felis concolor vancou-
verensis is about 20% too high, and measurement
error said to be ‘essentially zero’. However, even
if measurement error on the sides is very low, the
measurement error on the FA-estimate can be sub-
stantial, if the correlation between the sides is large
enough, i.e. if the asymmetry is slight. For Whit-
lock’s data on Canis lupus, measurement error is
said to be corrected for, but still CV is overesti-
mated by approximately a factor two. The reason
for this may be in the way in which measurement
error was corrected for.

The finding that CV is a constant has impor-
tant implications for comparisons of CV for dif-
ferent traits, or different populations. A finding
that some traits have a higher CV (as in Møller &
Höglund 1992) only means that these traits are
more prone to measurement error. Thus, consist-
ent differences in CV means consistent differences
in susceptability to measurement error.

Naturally ME will affect the estimation of the
correlation of FA from different traits, as already
noted by Whitlock (1996). The covariance of the
measures of FA is unbiased, but the variance of
FA has to be devaluated by the repeatability (robs =
rtrue√R1R2; Whitlock 1996). If we assume that the
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true variance is 1.0 for both traits and the co-
variance is 0.5, i.e. a correlation between the two
measures of r = 0.4, then the correlation given
maximum repeatability is only r = 0.16. With a
50% measurement error of FA, this then reduces
to r = 0.11. Thus, in both cases the estimated cor-
relation will drop to a level which in most studies
will be found not to be significantly different from
zero (critical levels for P = 0.05 indicate that sam-
ple sizes need to be in the order of 300 individu-
als). It is worth remembering in this context that a
finding of a low correlation does not mean that
the true one is really higher but masked by meas-
urement error, it may very well be that the two
measures are uncorrelated. The conclusion
reached here is that even if there is a high correla-
tion, it is likely to go undetected.

Power

We have earlier argued that the ANOVA approach
is superior (Merilä & Björklund 1995) because it
provides a means of decoupling measurement er-
ror and FA, which the traditional estimate fails to
do. However, the power of the ANOVA approach
has to be assessed. This is fairly straightforward,
and we have chosen the same approach as is com-
mon in quantitative genetic studies in estimating
variance components. In particular, we will fol-
low the approach used by Kearsey & Pooni (1996:
342–346) for the estimation of power and preci-
sion of a NCII breeding design. Here, we will only
outline the method briefly, while for a full treat-
ment the reader is referred to the original source.

The estimator of FA in the ANOVA approach
is the interaction variance component which has
the expected mean square MSFA = σerr

2 + rσFA
2 ,

where r is the number of measures on the same
variable, and the error MS is an unbiased estima-
tor of the true error variance. Thus, the FA esti-
mate is defined as:

σFA
2 =

MSFA – MSerr( )
r

(11)

Testing the significance of FA, tests the inter-
action mean square against the error mean square
with (n1 – 1)(n2 – 1) and n1n2(r – 1) df, where n1 is
the number of individuals, and n2 is the number

of sides. Of course, when analysing FA, the num-
ber of sides is 2. Thus, the dfs are in the case of
FA n1 – 1 and 2n1(r – 1), respectively. The ex-
pected value is then E F[ ] = 1 + rσFA

2 / σerr
2 . If the

critical value (say 5%) is F, let F’ = F/E[F] and
then power is the corresponding probability for
the F’-distribution and the appropriate degrees of
freedom. Thus, for n1 = 20, r = 2, and σFA

2  = σerr
2

= 2.0, E[F] is 3.0, F0.05[19,40] = 1.85, F’ = 0.62, and
power is thus P = 0.87.

The σFA
2 -estimator has great power even for

low sample sizes (Fig. 1). If the σFA
2  is twice the

error, then even with a sample size of 10 indi-
viduals we are highly likely to achieve a signifi-
cant result. On the other hand, if the error is twice
σFA

2 , then about 40 individuals are needed to get a
significant result in more than 80% of the cases.
It should be noted that power in this case is deter-
mined by the relationship between FA and ME
and not the absolute values. Thus, even in cases
of relatively high ME, a significant FA can be
found provided FA is large enough. For example,
even if ME = 20%, it is highly likely that we get a
significant FA even for moderate sample sizes
provided that FA is about 10% of the total varia-
tion.

Finally, the problems reported here also ap-
ply to measures of individual asymmetry. If asym-
metry is slight even very small levels of measure-
ment error can seriously distort the individual’s
values, and any correlation between asymmetry
and, for example, any fitness measure will be un-
certain. The only way to handle this, as we can
see it, is to measure the individuals a number of
times and take the mean values. Since the vari-
ance of the estimate decreases with the number of
measurements, this seems to be rewarding.

Conclusion

In conclusion, measuring FA by taking the abso-
lute difference of the sides should be avoided since
the influence of even small amounts of measure-
ment error on the original variables can lead to
drastically higher levels of measurement error of
the FA-estimate. The fact that CV of FA is a con-
stant (≈ 0.76) can be used as a quick way of check-
ing the influence of measurement error. If CV is
substantially higher than 0.76 than the measure-
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ments should be avoided. Luckily, there is an alter-
native, namely a two-way mixed model ANOVA
which provides independent estimates of both
measurement error and FA, and in addition has
considerable power, even for small sample sizes.
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