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Numbers or densities of a natural population typically change over time. These fluctua-
tions result from density-dependence mechanisms in the populations or external envi-
ronmental variations. According to modern ecological research, time series describing
population sizes and physical environments tend to be dominated by low-frequency
fluctuations, whereas, contrary to this, simple population dynamic models are mostly
dominated by short-term fluctuations. We review the recent theoretical advances in this
ecological research theme, referred to as the ecological colour problem. Here popula-
tion dynamics are analysed in the frequency domain, and named, in analogy of the light
wave length, red, white or blue. We emphasise the modern tendency of deriving popu-
lation ecological insight from dynamic, non-equilibrium analyses. We first deal with
deterministic and stochastic single-species population dynamics. We then study how
simple communities may respond to environmental noise. We finish by raising the
important problem of how the colour of the environmental noise may affect the risk of
population extinction.

1. Introduction

The very notion of population dynamics implies
that numbers, or density, are changing over time.
These population fluctuations are the result of
density-dependent feedback mechanisms and ex-

ternal variations in the environment. External in-
fluences may be periodic (e.g. seasonal changes)
or apparently random fluctuations in the environ-
ment (‘noise’). Inevitably, inherent and external
forces interact producing observed patterns in
population fluctuations. Explaining population
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fluctuations has become one of the most popular
endeavours in population ecology. Substantial
interest has been devoted to density-dependent
mechanisms, whether they be intraspecific or the
result of interactions with other species through
competition or predation. Regular multiannual
fluctuations, or ‘cycles’, have been of consider-
able interest for decades. In this paper, we will
approach such problems from a different angle.
Instead of focusing on population changes in the
time domain (e.g. whether population time series
are autocorrelated), the frequency domain of ob-
served time series will be our topic.

Long-term data on population fluctuations and
physical environments suggest that such variations
are dominated by low-frequency fluctuations
(Steele 1985, Lawton 1988, Pimm & Redfearn
1988, Pimm 1991, Sugihara 1995, Halley 1996).
This means that if the frequency composition of
the time series is analysed, longer wavelengths
are more prominent than short ones. Spectral
analysis is a statistical tool kit that enables us to
do this decomposition of time series. In analogy
with the wavelength composition of light, time
series that are dominated by low-frequency vari-
ations are referred to as ‘red’, and those domi-
nated by high-frequency fluctuations are called
‘blue’. In a ‘white’ time series, there is no par-
ticular frequency that dominates.

By decomposing the time series into spectral
frequencies we may ask whether populations are
inherently stable, cyclical, or chaotic. We may also
focus on the interplay between whatever internal
dynamics the population may have, and its sto-
chastic environment. This is fundamental not only
for our understanding of the dynamics of popula-
tions in general, but also for very practical pur-
poses — population persistence and extinction,
their management and conservation. This ap-
proach also highlights a more epistemological
problem. An ecological time series hides three dis-
tinguishable, albeit not mutually exclusive com-
ponents; the internal dynamics, interactions with
other populations, and the (stochastic) physical
environment. How much can possibly be dis-
cerned given that all that is available is an eco-
logical time series? This relates both to the clas-
sic signal-to-noise problem and whether we can
reduce the dimensionality of an ecological sys-
tem, and if so, how far?

In this paper, we review and summarise re-
cent attempts to address these issues. We will start
by analysing discrete-time deterministic popula-
tion dynamics in the frequency domain, showing
that the most elementary model hardly produce
red power spectra. The dynamics of these models
can be made less blue e.g. by introducing delays
in the model. We proceed by examining single-
species dynamics in a stochastic environment
showing that, in the equilibrium range of the de-
terministic dynamics, environmental noise may
dye population dynamics either red or blue. We
then study simple communities and their  response
to environmental noise. We also address the im-
portant problem of how the colour of the environ-
mental noise may enhance or reduce the risk of
population extinction. Apart from discussing the
spectral properties of these systems, we will also
deal with the more general problem of endogenous
and external factors influencing population time
series.

2. Deterministic population dynamics —
the role of intrinsic factors and popula-
tion interactions

2.1. Single-species models

The most famous discrete-time population model
is the non-linear Moran-Ricker model (Moran
1950, Ricker 1954), in which the dynamics are
given as:

Pt + 1 = Pt exp[r(1 – Pt)], (1)

where Pt is the population size in generation t, t =
1, 2, … , and r is the density-independent per
capita growth rate of the population. The surpris-
ingly complicated dynamics of this simple model
was one of the great discoveries in population
biology in the 70s (May 1974, 1976, May & Oster
1976). As the growth rate increases the popula-
tion dynamics are first locally stable, then become
periodic, and ultimately, through a series of pe-
riod-doublings, chaotic. Ever since, the popula-
tion biologists have attempted to detect chaos, and
other forms of complicated dynamics in natural
population dynamics (Sugihara & May 1990,
Cazelles & Ferrière 1992, Stone 1993, Hastings
et al. 1993, Cohen 1995, Kaitala & Ranta 1996)
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Fig. 1. Examples of power spectra of the simulated
dynamics of the Moran-Ricker model. In each case r =
2.8. — a: In deterministic population dynamics (Eq. 1)
high frequencies of population fluctuations obtain more
spectral power than low frequencies. Thus, the population
dynamics are blue. — b: Population dynamics subject to
delayed density dependence (Eq. 2). a1 = 1.0 and a2 =
5.0. The spectral power is now more evenly distributed
among the low and high frequencies than in case (a)
and more close to white than blue. — c: The deterministic
dynamics of case (a) are now subjected to red, white
and blue external noises (Eqs. 3 and 4), denoted by thin
full-dashed, dotted, and thick full-continuous lines,
respectively. The external noise affects the colour of the
population dynamics, and the effect may depend crucially
on the stability properties of the corresponding
deterministic model. For the computation of the power
spectra, see e.g. Cohen (1995).

lation dynamics studies. Cohen (1995), when ana-
lysing chaotic dynamics of simple nonlinear popu-
lation models, observed that chaotic time series
produced by these models are without exception
dominated by high frequencies, that is, the popu-
lation dynamics are blue. This was argued to be
in contradiction with the empirical observations
that ecological time series tend to be red. Thus, a
puzzle was born.

Cohen (1995) showed in particular that the
power spectra densities of the Moran-Ricker
model, as well as of the seven other models, are
predominantly blue with greater power at high fre-
quencies (Fig. 1a). The results are summarised so
that the power spectra of each of the population
fluctuations studied was on average at least two
orders of magnitude higher at high frequencies

without any major success. However, a possible
breakthrough may be in sight. R. F. Costantino and
his co-workers have recently been able to verify
experimentally different types of population dy-
namics and bifurcation diagrams predicted by the
nonlinear age-structured model of the flour bee-
tles of the genus Tribolium (Costantino et al. 1995,
1997, Dennis et al. 1995, Desharnais et al. 1997).

Stability properties and the types of the ulti-
mate dynamics, that is, attractors, are only one
part of the classification of the population dynam-
ics. A more detailed study of time series in the
frequency domain reveals that there are qualita-
tively different types of dynamics even within the
classes of periodic or chaotic dynamics. This prob-
lem of the colour of the population dynamics has
recently given rise to a number of theoretical popu-
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than the power at low frequencies. Blarer and
Doebeli (1996) and White et al. (1996b) com-
mented on these results showing that in the eight
basic models analysed by Cohen (1995), the col-
our of chaotic dynamics may change for different
parameter values, and furthermore, the type of the
density dependence may crucially affect the col-
our of the population dynamics.

2.2. Delayed-density dependence

Kaitala and Ranta (1996) re-analysed the power
spectra of chaotic trajectories of six deterministic
autonomous non-linear population models by us-
ing a modification incorporating delayed-density
dependence into the model dynamics. For exam-
ple, model (1) is now replaced by:

Pt + 1 = Pt exp[r(1 – a1Pt – a2Pt–1 )], (2)

where a1 and a2 are parameters.
The results by Kaitala and Ranta (1996)

showed that adding delayed-density dependence
in the population models may remove the domi-
nance of the high-frequency oscillations and may
whiten or redden the frequency distribution of the
population dynamics (Fig. 1b). It should be noted
that a single population model including delayed-
density dependence can also be used to describe
interactions between different species or different
cohorts of the same species (Turchin & Taylor 1992).

Kaitala and Ranta (1996) drew our attention
to the route to chaos in explaining their results.
They argued that the simplest population dynamic
models, having their own merits, may be of lim-
ited use in explaining the fluctuations of natural
populations. Among the several routes to chaos
(period-doubling route, quasiperiodic route, and
intermittency, May 1974, 1976, Hastings et al.
1993) the simple population dynamics models
generate the period-doubling route, and sometimes
intermittency, but never the quasiperiodic route.
Nevertheless, the route to chaos may be connected
to fundamental differences in the power spectra
of the chaotic solutions. For example, the quasi-
periodic route to chaos often occurs in the con-
text of species or population interactions (Kaitala
& Heino 1996), or in age-class interactions in a
single population (e.g. Costantino et al. 1995).
Delayed-density dependence may also produce the

quasiperiodic route to chaos, which may produce
more red power spectra than the period-doubling
route.

3. Spatial dimension of the population
dynamics

Populations seldom live in one spot but are spa-
tially distributed. Introducing spatial dimension
into population dynamics, e.g. through dispersal,
has been observed to result in a variety of hetero-
geneous temporal and spatial patterns. The pat-
terns, identified so far by the theoretical models,
include different kinds of waves, lattices and spa-
tial synchrony patterns (Bascompte & Solé 1995,
Ranta et al. 1995, Ranta & Kaitala 1997, Ranta et
al. 1997abc).

The implications of spatial structure to the
colour of the population dynamics was studied
by White et al. (1996a) who showed that spatial
population structure may give rise to reddened
spectra. Their spatial model included also host–
parasite interactions, although White et al. (1996b)
tend to overlook this aspect in favour of spatial
structure in explaining the reddened population
dynamics. Thus, convincing studies on the role
of space on the colour of population dynamics
seem to be missing.

4. The interaction between population
dynamics and environmental noise

During the debate following Cohen’s results (re-
call section 2.1) Sugihara (1995) suggested that
environmental fluctuations possibly need to be in-
corporated. Indeed, the colour of environmental
noise affects the colour of the power spectrum of
the population time series. This dependence was
studied by Kaitala et al. (1997) who showed that
adding white noise to stable population dynamics
will make the population dynamics either red or
blue, depending on the value of the population
growth rate or the type of density dependence.
Population dynamics that are subjected to red and
blue environmental noise show respectively more
red or blue power spectra than those subjected to
white noise.
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Fig. 2. The logarithms of the
colour indices as a function
of the intrinsic growth rate r
in the Moran-Ricker model.
Notations ‘o’, ‘+’ and ‘•’ cor-
respond to blue, white, and
red environmental noises,
respectively. Positive and
negative colour indices indi-
cate red and blue population
dynamics, respectively. The
different effects of red, white
and blue noises are most
distinctive in the stable area
(r < 2) of the deterministic
population dynamics.

Kaitala et al. (1997) studied the colour prob-
lem using two discrete time models, a simple
Moran-Ricker (Moran 1950, Ricker 1954) and a
more sophisticated Maynard Smith (Maynard
Smith 1974) model. In both cases, the coloured
noise was added to the population size by using a
multiplicative form. The colour index (Blarer &
Doebeli 1996), i.e. the ratio between the area un-
der the spectrum ranging from 0 to 0.25 to the
area ranging from 0.25 to 0.5, was used to ex-
plore the effects of the coloured noise on the popu-
lation dynamics. If the logarithm of the colour
index is positive, the power spectrum is red, and
if it is negative the spectrum is blue.

4.1. Moran-Ricker model

In their simulations, Kaitala et al. (1997) subjected
the population dynamics to environmental noise
of different colours, and assumed a multiplica-
tive effect of the noise yielding the following
population dynamics:

Pt + 1 = Pt f(Pt)(1 + dt),  (3)

where f(Pt) = exp[r(1 – Pt)] is the per capita growth
rate, and dt is a coloured environmental noise gen-
erated by:

dt + 1 = cdt + wt,  (4)

where wt is a random variable (i.i.d., uniformly
distributed on the interval (– 0.5, 0.5)). This proc-
ess yields power spectra of the coloured noise as
red, white, and blue for c >, =, and < 0, respec-
tively.

In the stable region of the deterministic dy-
namics (r < 2) the colour of the environmental
noise strongly affects the colour of the popula-
tion dynamics (Fig. 2). For low values of the in-
trinsic growth rate (r < 0.8), the dynamics are red,
turning to blue with increasing growth rate. Red
population dynamics are observed for low values
of r even for white and blue environmental noises,
and blue population dynamics are discovered for
higher values of r (1.5 < r < 2) even for white and
red environmental noises. The colour of popula-
tion dynamics subjected to environmental noise
could be determined by the different approaches
to equilibrium. For 0 < r < 1 the approach to equi-
librium is exponential and non-oscillatory. This
means that the time series are positively autocorre-
lated and therefore the dominance of the long-
term trends and reddened spectra are expected.
The oscillatory approach for 1 < r < 2, however,
implies negative autocorrelations and, thus, blue
spectra.
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In the stable region for each value of r, the
colour of the population dynamics is affected by
the colour of the environmental noise: red and blue
environmental noises cause, respectively, more
red and blue spectra of the population dynamics,
as compared with the colour under white noise.
Thus, stable population dynamics are sensitive to
the colour of the environmental noise (Kaitala et
al. 1997). Especially for r ≈ 1 the colour of the
environmental noise determines the colour of the
population dynamics.

When the coloured noise is superimposed on
the population dynamics, the power spectra re-
main blue for the whole interval of the period-
doubling cascade (2.0 < r < 2.6924). However,
for 2.0 < r < 2.4, the difference of the environ-
mental colour can be discovered but this sensitiv-
ity to the differences in the environmental col-
ours vanishes as the dynamics approach the cha-
otic region with increasing r.

For r > 2.6924 the deterministic population
dynamics turn to chaos. In this range the differ-
ence between the different coloured environmen-
tal noises seems to be minor, as compared with
the differences observed for the stable and peri-
odic regions of the population dynamics. Never-
theless, the colour of the environmental noise still
maintains its ability to affect the colour of the
population dynamics (Fig. 1c). Furthermore, with
increasing growth rate the colour of the power
spectrum approaches that of white, irrespective
of the colour of the environmental noise.

4.2. Maynard Smith model

To check the robustness of the results produced
by the Moran-Ricker model, Kaitala et al. (1997)
repeated the analysis, also applying the Maynard
Smith model in Eq. 3 so that f(Pt) = r/(1 + (aPt)b),
where a and b are parameters. The findings re-
ported above were discovered also with this model
for high growth rates when the strength of den-
sity dependence b was varied. However, for low
growth rates the power spectra of the population
dynamics with noise are red in stable, periodic
and aperiodic ranges irrespective of the noise col-
our. Chaotic population fluctuations may show
blue spectra in the deterministic case, and thus,
blue deterministic chaos may become red under
any colour of the noise. However, Kaitala et al.

(1997) did not observe the opposite — red dy-
namics turning blue.

Analysis of the Maynard Smith model shows
that the stability properties of the model do not
alone determine the colour of the dynamics under
environmental noise — different combinations of
growth rate and density dependence may produce
qualitatively different results. This was observed
in the stable region of the model by maintaining
the derivative at the equilibrium constant but
changing the values of r and b. The results show
that although the equilibrium population size of
the undisturbed model remains equally stable, the
disturbed dynamics may be blue or red.

5. Food chains and sensitivity to envi-
ronmental noise

The obvious restriction in previous models has
been the predominant use of single-species mod-
els. It is true that much of the multidimensional
reality can be reduced by built-in time-lags in sin-
gle-species models (Turchin 1990, Royama 1992,
Kaitala et al. 1997), but it is inevitable that an
analysis of entire food webs will reveal new fea-
tures of stochastic processes in natural popula-
tions. Considering larger systems of interacting
species also enables us to ask questions about how
disturbances of one or more parts in a system are
transferred to other parts or how such disturbances
might become absorbed. Also, the question is
whether different trophic levels or different types
of community components (e.g., omnivores,
squeezed-in competitors) respond to, and trans-
fer external noise differently. As in all ecological
modeling, increased dimensionality decreases
tractability, especially if we are interested in
stochastic processes.

When we move onto multispecies systems, we
generally have to make a number of critical as-
sumptions about the exact nature of the species
interactions. This is not a trivial task, and the
choice of competitive terms and the functional
response of predators, among other things, may
tremendously influence the outcome of the analy-
sis. In the first serious attempt to understand the
general effects of external noise on simple food
webs, Ripa et al. (1998) solved that problem by
letting the type of interaction in the web be un-
specified and expressed in very general terms.
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Their results also turned out to be perfectly gen-
eral. We will here summarize those results and
point out directions for future studies of this im-
portant topic.

Ripa et al. (1998) chose to start analysing the
problem with the simplest possible food web; a
two-species system, N1(t) and N2(t) (the densities
of the two populations at time t), with a single
noise factor:

N t f N t N t z t

N t f N t N t z t
1 1 1 2

2 2 1 2

1

1
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where fi denotes the density-dependent recruitment
function for species i. The factor z(t) is any kind
of stochastic element in the model, it could be a
stochastic model parameter or an additive or mul-
tiplicative noise factor, possibly density-depend-
ent, to account for different kinds of demographic
or environmental stochasticity (see also Ripa &
Lundberg 1996 for how noise can be included in
the model). Now suppose that an equilibrium point
exists for this system, taken at the average value of
the stochastic factor, E(z(t)) = z*. The stability of
the equilibrium is determined by the Jacobian matrix:
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where Ni* denotes the equilibrium density of the
respective population. The Jacobian helps us to
determine the stability properties of the system. Let
us suppose that the equilibrium point is stable and
that we, as a thought-experiment, displace the sys-
tem a small part away from the equilibrium. If the
equilibrium is stable, and the stochastic distur-
bances are small, the system will stay in the neigh-
bourhood of the equilibrium, and it is justified to
use a linearised version of it. With all higher order
terms eliminated, the system then takes the form:

x1 t + 1( ) = J11 x1 t( ) + J12 x2 t( ) + ∂f1

∂z
N1

*, N2
*, z*( ) × ζ t( )

x2 t + 1( ) = J21 x1 t( ) + J22 x2 t( ) + ∂f 2

∂z
N1

*, N2
*, z*( ) × ζ t( )









, (6)

where xi(t) = Ni(t) – Ni
*, and ζ(t) = z(t) – z*, or, in

a vector form:

x(t + 1) = Jx(t) + g*ζz(t), g* =

∂f1 N1
*, N2

*, z*( )
∂z

∂f 2 N1
*, N2

*, z*( )
∂z



















(7)

This is the system that is the subject for fur-
ther analysis.

5.1. Frequency analysis

Ripa et al. (1998) proceeded their analysis of the
influence of noise on the simple food web by first
noting that the vector g* contains the standard de-
viations of the external noise at each trophic level,
i.e., the strength of the disturbance at each level.
An element equal to zero means that this specific
population is not directly influenced by the noise.
Second, they performed a frequency analysis of
the linear system (6), giving the explicit power
spectra of the populations:

Px(f) = |(ei2πf I – J)–1 g*|2Pz(f), (8)

where I is the identity matrix, |…|2 denotes ele-
ment-wise squared magnitude, Px(f) is a vector
of power spectra for each population and Pz(f) is
the power spectrum of the external noise z(t),
which all are functions of f, frequency. An at-
tractive feature of this somewhat cumbersome
expression is that J, the Jacobian of the system
under study, enters nicely. In fact, Eq. 8 on its
own, yields the whole predicted power spectra
of the populations in the food web. It is general
and independent of food web size and structure.
The only assumption so far is that the system
can be linearised around its equilibrium. This is
a very profound result; if we know the proper-
ties (i.e., the power spectrum) of the noise and
the Jacobian (i.e., the direction and magnitudes
of intra- and interspecific-density dependencies),
the resulting power spectra of all the populations
in the food web are known!

Now we return to the two-species case, where
further predictions emerge. Suppose only species
1 is subject to external noise (g2 = 0). Then the
ratio of the power spectra of the two populations
can be shown to be (Ripa et al. 1998).

P1( f )
P2 ( f )

= 1 + J22
2 – 2J22 cos(2πf )

J21
2

(9)
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Let us illustrate this fundamental result with a
simple example. This is the well-known Bedding-
ton et al. (1975) predator–prey model with multi-
plicative noise at the prey level:

N t + 1( ) = N t( )er 1– N t( )
K( )e– aP t( ) 1 + z t( )( )

P t + 1( ) = cN t – e– aP t( )( ) , z t( ) ∈N 0, s2( )





, (10)

where K is the carrying capacity, c is the average
number of predator progeny produced per prey
attacked, and s2 is the variance of the noise term.
Fig. 3 shows the power spectra of the two popula-
tions resulting from a simulation of this system
with white noise. First, note the good correspond-
ence between the predicted power spectra (Eq. 6)
and the power spectra calculated from the simu-
lated time series, although the disturbing noise
has a quite large amplitude and the populations
often move far away from the equilibrium densi-
ties. Secondly, it is readily shown that J22 of the
Jacobian matrix of model (Eq. 10) is always posi-
tive. Hence, the principle of relative spectrum
colour predicts that the prey spectrum will be more
blue, i.e. more dominated by high frequencies,
than the predator spectrum (Fig. 3).

Apart from the very simple rule determining
the relative frequency response by interacting
species, our results also have some important rami-
fications for how we interpret the colour of real
ecological time series. It has been suggested that
the red-shifted population time series we often
observe in natural systems is a direct result of the
colour of the environmental fluctuations (Pimm
1991, Powell & Steele 1995) or other properties
of the environment, e.g. spatial structure (White
et al. 1996a). Alternatively, most populations are
inherently ‘red’ and the power spectrum we are
able to detect is by and large unaffected by envi-
ronmental stochasticity. This would be true if, for
example, the population is governed by suffi-
ciently strong time-delayed density dependence
(which tends to redden the spectrum) that over-
ride the external noise signal (Ranta et al. 1995,
Kaitala & Ranta 1996, Kaitala et al. 1997). We
know, however, that the interplay between inter-
nal dynamics and external noise may produce a
wide variety of frequency responses in the time
series so that the observed spectrum may say very
little about the relative contribution of the inter-
nal and external determination of its properties

Fig. 3. The last 50 years of the simulated time series of
predators (time 50; solid line) and prey (dashed line)
according to Eq. 9 with white external noise with zero
mean and variance equal to 0.12 affecting the prey popu-
lation. Lower panel shows the corresponding power spec-
tra (dashed lines) for the two populations along with the
predicted spectra (solid lines) according to the linearized
version of Eq. 9. The parameter values in Eq. 9 were r =
1.0, K = 1 000, a = 0.012, c = 0.1. The equilibrium densi-
ties were 883 and 9.7 for prey and predator, respectively.

Note that this ratio is independent of the noise
spectrum. This is an increasing function in the
appropriate frequency interval (0 ≤ f ≤ 0.5) if and
only if J22 is positive. If the ratio (9) is increasing,
the spectrum of population 1 will be more domi-
nated by high frequencies than population 2’s
spectrum. Population 1 will therefore have a bluer
spectrum than population 2. A negative J22 gives
a decreasing function, and the opposite relation-
ship between the colours of the two power spec-
tra. Of course, the numbering of the species is
arbitrary. Ripa et al. (1998) thus reach the fol-
lowing conclusion regarding the resulting spectra
of a two-species food web: If population 1 is sub-
ject to external noise, the sign of one single ele-
ment of the Jacobian matrix, J22, determines the
relative noise response by the populations. When-
ever J22 is positive (negative), population 1 will
be more blue (red) than population 2.
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(Cohen 1995, Blarer & Doebeli 1996, Kaitala et
al. 1997). Our results further emphasize this prob-
lem. If a population is embedded in a food web,
which all populations are, the interactions them-
selves may significantly modify the expected fre-
quency response, and differently so for different
components of the web. We therefore propose that
all interpretations of ecological time series in the
frequency domain must be accompanied by at least
rudimentary knowledge about: (1) the nature of
the external noise, (2) the basic properties of the
internal dynamics, and (3) the basic food web
structure in which the focal population is embedded.

Although this requires a whole lot of detailed
ecological knowledge, we nevertheless feel that
our results hint at an interesting way of gaining
some insight into this problem. Determining food
web structure is not a trivial issue, either from a
philosophical or practical point of view. We note,
however, that in our simple system, only the sign
of one of the elements in the community matrix
(the Jacobian) is of importance. It is not an im-
possible task to determine this in real systems,
provided that we safely can reduce the dimension-
ality of the web. We therefore call for a cautious
interpretation of frequency analyses of ecologi-
cal time series unless food web structure is taken
into account. The basic problem of the lack of
long time series remains, of course, but without
properly accounting for food web structure the
enigmas of fluctuating population dynamics will
remain.

6. Noise colour and extinction risk

A recurrent problem in ecology and conservation
biology is to estimate the risk of population ex-
tinction. Extinction probabilities are not only im-
perative for conservation and management, but
may also elucidate basic mechanisms of the regu-
lation of natural populations (Pimm 1991, Burg-
man et al. 1993). One of the crucial steps in risk
calculations is the formulation of the stochastic
parts of the model. The usual way of modeling
stochastic influence on population dynamics has
been to assume that the external noise is uncorre-
lated, or white. As it has been pointed out by sev-
eral authors (Steele 1985, Ariño & Pimm 1995,
Caswell & Cohen 1995, Halley 1996, and oth-

ers), this might not be the best choice. Abiotic
factors tend to have reddened spectra, hence they
are autocorrelated. What implications does this
observation give us in the context of extinction
risk assessments? Does an autocorrelated envi-
ronment increase or decrease the risk of popula-
tion extinction? What kind of autocorrelation is
appropriate?

Strebel (1985) carried out a preliminary analy-
sis of the topic. He analyzed a continuous time
logistic model with variations in the carrying ca-
pacity K. In Strebel’s model, fluctuations with a
characteristic ‘correlation time’, depending on the
intrinsic growth rate r, were severe to the popula-
tion, whereas faster or slower fluctuations were
not as dangerous. Johst and Wissel (1997) ob-
served that extinction risk increases with correla-
tion time if the strength of the noise is large
enough.

Mode and Jacobson (1987ab) used an AR(2)
environment process that, transformed, control-
led mortality and nativity in an age-structured,
density-independent population model. They
found that the extinction risk greatly depended
on the characteristics of the environmental proc-
ess, such as its autocorrelation function or its vari-
ance. For instance, a more positively autocorre-
lated environment increased the extinction risk,
even if the variation of the environment was kept
constant. Not surprisingly, a largely fluctuating
environment was more hazardous to a population
than a relatively constant environment.

Ripa and Lundberg (1996) investigated the
well known Moran-Ricker equation and its sensi-
tivity to autocorrelated noise in the form of an
AR(1) process. Their results were much the same
as Mode and Jacobson (1987ab), only they found
that increased autocorrelation seemed to decrease,
not increase, the risk of extinction. These results
were more thoroughly investigated by M. Heino
and V. Kaitala (unpubl.) and M. Heino (unpubl.).
By investigating different model structures related
to age, space and noise scaling they showed that
the question whether increased autocorrelation in
the environmental fluctuations increased or de-
creased the extinction risk of a population did not
have a straightforward answer.

It remains as a general result, though, that the
attributes of the environmental fluctuations in a
population dynamic model are of paramount im-
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portance for the estimated risk of extinction. This
calls for very careful modeling of stochastic popu-
lation dynamic systems and points to the need for
more knowledge of the way in which abiotic fac-
tors influence biological systems, how they are
connected and on what time scale the influence is
taking place.

7. Concluding remarks

The study of the interplay between external noise
and ecological system has just begun. The first
attempts to add an arbitrary noise signal to an ar-
bitrary ecological model were obviously incom-
plete, although the very idea of including the in-
evitably noisy component of the world into mod-
els of natural populations certainly is welcome.
Science always has the delicate task of finding
the adequate balance between simplicity and re-
alism and one may argue that the wonderful sim-
plicity of purely deterministic population models
is to be preferred. It all depends, of course, on
what kind of problem we are addressing. We will
not, however, be able to avoid uncertainty, i.e.,
random events that we cannot control or predict.
This is perhaps most obvious in population man-
agement (including harvesting) and in conserva-
tion biology. If we do not understand what esti-
mation errors or a noisy environment can do to
harvested or otherwise vulnerable populations, we
will never be able to minimize extinction risks
and maintain natural biological diversity.

We have learned that one of the most promi-
nent properties of ecological time series in the
frequency domain, i.e. the red-shift, does not nec-
essarily say anything about either the nature of
the environmental noise, or the systems affected
by it. Instead of asking whether there is a single
cause for most time series to share this common
property, we should perhaps ask what makes an
ecological system (population, food web) robust
to external environmental noise. Also, can such
noise signals do other things to the populations so
that we may be fooled about the true nature of the
dynamics by just scrutinizing the time series as
such? The interplay between internal dynamics
and external variability is apparently rich in pos-
sible net results. To understand more about this
interplay also helps us understand how to disen-

tangle the two players. If the noise is out of influ-
ences’ reach, the deterministic components of the
vital rates of the population may not be. Thus,
knowing what kind of systems are sensitive to
what kind of noise (and how) may help us not
only to understand very fundamental population
processes, but also how to moderate potentially
detrimental affects from stochastic fluctuations in
the environment. Therefore, the study of larger
food webs and environmental stochasticity should
be high up on the agenda.

Demographic noise is one source of stochasti-
city that we have not dealt with here. This is not
because we think that it is unimportant, on the
contrary, but we feel that it is such a built-in part
of the internal dynamics. The interplay between
demographic and environmental stochasticity is
in itself an intriguing issue and we have dealt with
it elsewhere (P. Lundberg & J. Ripa unpubl.). We
also have omitted a more detailed analysis of sys-
tems in continuous time. Again, it is not because
that approach is irrelevant or unimportant. Sto-
chastic continuous time models are, however,
considerably more complicated, and we hope to
have sacrificed completeness to simplicity, al-
though not all not-so-mathematically inclined
readers may agree.

Analysing population dynamics in the fre-
quency domain certainly adds new tools to the
analytical toolbox for studies of changes of popu-
lation number and distribution. We must not for-
get, however, that this approach, just as any other,
must build on reasonable assumption about the
biological mechanisms behind changes in vital
rates (births and deaths). New statistical methods
for time series analysis, as well as better model
representations of biological populations are both
wanted and badly needed for understanding suc-
cessfully both the remarkable stability of some
populations and the dramatic changes in abun-
dance over time in others. Let us go and look for
them!
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