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Variation in animal numbers is an interesting ecological problem in both theoretical
and applied research. Recent research has shown that there is a myriad of problems
involved in measuring variability in animal populations, which have not been addressed
in most empirical studies on fluctuations of animal densities. Therefore, we actually
know less about variability in animal populations and communities than we think. It is
rarely possible to accurately sample entire populations and our estimates of variability
usually come from spatially restricted samples of counts drawn from local populations.
The observed variability not only reflects variability in population density or size but
also involves a sampling variance component. Sampling variance occurs principally
due to inexactness of the counts (i.e. all individuals present in the sampling unit do not
enter into samples) and spatial variance (the size of the sampling unit is inadequate to
capture the dispersion pattern of individuals in the field). Many samples are affected by
both of these sources of error and in most cases we are unable to separate their effects.
Sampling variance usually affects the variability estimates and particularly besets small
samples. When comparisons are to be made in temporal variability between communi-
ties, species, populations or sites, great care must be taken to mitigate the effects of
sampling variance. If the counts are replicated in space or time then sampling error can
fairly simply be estimated and removed. Even in the absence of replication, statistical
methods exist allowing estimation of the sampling variance. These methods are only
applicable if we are prepared to make assumptions about the distributions of the counts.
We exemplify one of these methods by considering a classical case of latitudinal gradi-
ents in density variability in animal communities. We finally discuss recent studies, the
results of which might be artefacts arising from sampling variance.

Hanski 1990). A number of within-species pat-
terns in the temporal variability of abundances
have also been postulated. The magnitude of vari-
ability has been found to correlate negatively with

1. Introduction

Animal abundances fluctuate in time. Some taxa
seem to vary more than others (Schoener 1986,



Mönkkönen & Aspi • ANN. ZOOL. FENNICI Vol. 3448

mean population density (Järvinen 1979, Taylor
& Woiwod 1980, Curnutt et al. 1996), body size
(Gaston 1988), geographic range size (Gaston
1988) and feeding specificity (Redfearn & Pimm
1988), and positively with population growth rate
(Pimm 1991, Hanski & Woiwod 1993), latitude
(Järvinen 1979) and extinction probability (Pimm
1993). These temporal variations are of substan-
tial interest to animal ecologists also because these
dynamics have important, both theoretical and
applied, bearings on population and community
ecology as well as on conservation biology. At
the community level, variation may lead to inter-
ruptions or reversals of biological interactions
thereby slowing down the process of competitive
exclusion or even preventing it (e.g. Chesson
1986).

However, recent research has shown that there
are serious problems involved in comparisons of
population variability between different species
and populations (McArdle et al. 1990, McArdle
& Gaston 1992, 1993, 1995, Gaston & McArdle
1993, 1994, Leps 1993, Link et al. 1994, Link &
Nichols 1994, Stewart-Oaten et al. 1995) suggest-
ing that we actually know less about variability in
animal populations and communities than we
think. McArdle et al. (1990) asserted that “prob-
lems associated with the measurement and inter-
pretation of population density variability … have
confounded most, if not all, previous studies of
the subject”. These problems are both conceptual
and statistical.

Most studies of variability are based on counts
of animal populations. Exact censuses of total
populations are usually impossible. Therefore, we
often do not know the true number of animals in a
population, and hence the true density or the true
variability of the density. We can only estimate
these values based on samples taken from a lim-
ited area (field, forest tract, quadrate, circular sam-
pling area etc.). Sampling errors, that is, the inex-
actness of the counts (Link et al. 1994) and spa-
tial variance (Horne & Schneider 1995, Stewart-
Oaten et al. 1995), usually affect variability in
samples (see also McArdle & Gaston 1993). These
sources of variability together are often called
sampling variance. This component of variability
is not biologically relevant, and should be removed
from measures of variability. In this paper, we
provide a survey of the sources of sampling vari-

ance (sampling error) and review the methods
proposed to remove their effects. It is obvious that
variability in multi-species assemblages involves
the same problems as at the population level, and
the effects of sampling variance may be quite dra-
matic. We, therefore, provide a look at the vari-
ability in the total density of community samples,
and also briefly refer to variability in other com-
munity properties such as species number and
diversity. Finally, we provide a few examples to
illustrate the effects of sampling variance in real
data.

2. Measures of variability

A large number of indices have been proposed as
measures of temporal variability of animal abun-
dances (Gaston & McArdle 1994). Of the three
most commonly used, standard deviation of log-
transformed densities (SDlog(Xt), where Xt is the
number of individuals in the sample at time t),
and coefficient of variation of untransformed den-
sities (CV(Xt) = SDXt/x, where x is the mean of
Xt’s) provide a constant measure of variability,
whereas the third, SDlog(Xt+1) is biased (Ans-
combe 1948, McArdle et al. 1990, McArdle &
Gaston 1995).

It was shown that SDlog(Xt) and CV(Xt) are
very similar, so that if two populations have equal
CV(Xt) then the values of SDlog(Xt) tend also be
very similar, and if CV(Xt) differs so will
SDlog(Xt) (Gaston & McArdle 1994). At rather
low densities, some or even most Xt values will
be zero and log(Xt) remains undefined but CV(Xt)
can still be used.

A consistent observation in ecology is that
variability in population abundance of a species
and average population densities are related in
both space and time. There are several models to
describe variance-mean relationship (see Gaston
& McArdle 1994). A conventional way is to use
Taylor’s power function (Taylor 1961):

log(V) = a + blog(x), (1)

where V is sample variance, x is average abun-
dance, and a and b are constants. Mean-variance
plots on a logarithmic scale are often called Taylor
power plots. Note that variability is independent
of mean abundance when the slope of the Taylor
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power plot b = 2 (Hanski 1982, McArdle et al.
1990). In such a case, there is no slope between
CV(Xt) and average abundance but the slope be-
tween SDlog(Xt) and average abundance is 1.

3. Sampling variance

3.1. Density variability and mean abundance

In measuring population variability, one must dis-
tinguish between variability of a population and
that of a site (McArdle & Gaston 1993). Usually
ecologists measure variation in the number of in-
dividuals in a spatially restricted sample from an
open population, i.e. variation in density. This
measure may or may not reflect population varia-
tion. It is perfectly possible to find stable local
densities, for example, in source habitat patches
where reproduction exceeds mortality, even
though total population size varies wildly because
of high variability in sink habitat patches, where
populations are dependent on the immigration
from the source (see Pulliam 1988, Pulliam &
Danielson 1991, for source-sink population
model). Global population size may remain sta-
ble even though densities at study plots vary, e.g.
in nomadic species. Unlike population variabil-
ity, community variability is a site-related prob-
lem. In this paper, we explicitly deal with densi-
ties, i.e. counts in samples representing study areas
clearly smaller than the species range.

The dependence of variability on mean abun-
dance (e.g. b ≠ 2 in Taylor power plots) makes
comparisons between samples of different sizes
deceptive and affects any statement based on a
single estimate of variability (see McArdle et al.
1990). The decreasing CV(Xt) with increasing
mean abundance (see e.g. Helle & Mönkkönen
1986) may be solely due to a sampling error be-
cause the sampling error affects small samples
more than large ones (Järvinen & Lokki 1978,
Taylor & Woiwod 1982, Taylor 1984, 1986,
McArdle & Gaston 1993).

3.2. Inexactness of the counts

Quite often all individuals present on the study
plot do not enter into samples taken at any given

time t. This particularly applies to most census
schemes designed to enumerate and monitor wild-
life populations. If sampling efficiency is less than
100%, even completely stable populations may
appear as variable; yearly samples get ‘noisy’ (e.g.
Järvinen & Lokki 1978, Link et al. 1994). Any
analysis treating counts as if they represented the
actual population size have been assumed to lead
to biased estimates of temporal variability, even
if estimates of average density were accurate (e.g.
Link et al. 1994). This is not necessarily the case.
There is a possibility of decreased variability as
well. We simulated the effect of adding error vari-
ability to true variation in a time series where mean
abundance was 100 individuals. Both ‘true’ and
error variability follow the Poisson distribution.
The process with added error amounting to 10%
of true variability decreased variance compared
with true variability in 32% of cases. So, to be
exact, the observed value of variance grows in
general because of sampling variance, but this
does not say anything about a given single case.

Sampling from a population with Nt individu-
als can be described by random binomial process,
where individuals enter into samples with prob-
ability pi, the efficiency of the method used for
species i. Expected count, Xt, then becomes piNt

with variance (1 – pi)piNt (see Järvinen & Lokki
1978, Link et al. 1994) which is (1 – pi)Xt. This
gives CV(Xt) as √(1 – pi)/Xt . The error variability
because of inexactness of the counts measured by
CV(Xt) decreases with increasing Xt and pi. On
log-log scale, the slopes of the lines between Xt

and CV(Xt) are – 0.5 if pi remains constant for all
Xt. This slope corresponds to b = 1 in Taylor power
plots. In general, rare species produce Taylor
power plots with b = 1 because their variation
follows the Poisson distribution (Taylor 1984).
Therefore, if sampling efficiency is less than 1,
there is a chance that one could interpret such
slopes as representing populations in which tem-
poral/spatial variation is random. This may or may
not be true. Even with fairly high values of pi,
sample sizes should be several tens of individuals
to avoid high error variability, e.g. if pi = 0.8, av-
erage Xt should be larger than 20 to get error
CV(Xt) smaller than 10%.

Furthermore, sampling efficiency, pi, certainly
varies among species and need not be a species
specific constant either. It may vary with popula-
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tion density, for example. At high population den-
sity social stimulus from other individuals, both
conspecific and heterospecific, increases territo-
rial activity such as singing in birds (Møller 1992,
Verner 1992). This may result in higher detecta-
bility at high, when compared with low, densities
(Helle & Pulliainen 1983). In a similar manner, a
higher density may result in a higher mobility of
individuals, which, in turn, enhances sampling ef-
ficiency (probability of being counted, trapped
etc.). The probability of being counted may also
become reduced at high densities, e.g. because of
trap saturation (Xia & Boonstra 1992). If pi in-
creases with Nt, the decrease in CV(Xt) with mean
Xt may be very steep. Summarizing, if the densi-
ties are estimated rather than counted completely,
perfectly stable populations are expected to yield
slopes ≤ 1 in Taylor power plots, or slopes ≤ – 0.5
in log(Xt) vs. logCV(Xt) plots.

3.3. Spatial variance

The second form of a sampling variance involves
the problem of scale. Sampling (with pi = 1) of a
population, which is completely uniformly dis-
persed and stable in time, results in no variability,
but if individuals are not uniformly dispersed, a
sampling variance may appear depending on the
scale of a sampling plot relative to the pattern of
dispersion (Wiens 1981, Stewart-Oaten 1995). As
the number of individuals in populations and com-
munities are very seldom counted completely, but
rather estimated based on a spatially restricted
sample from open population(s), these temporal
variability estimates often contain a (usually un-
known) proportion of spatial variance. Individu-
als in a population may appear aggregated at a
certain spatial scale, but randomly or uniformly
dispersed at smaller and larger scales (Pielou
1977). Increasing the spatial area of a sampling
unit inevitably increases sample size but may also
affect variability independently of mean abun-
dance. The spatial scale affects the estimate of
temporal variability (Wiens 1981, McArdle &
Gaston 1992) potentially confounding compari-
sons between different populations and species if
sampling units are of a different size relative to
individual territories/home ranges.

To exemplify how this form of a sampling
variance affects the estimate of CV(Xt) in the den-
sity of a species, we calculated values of CV(Xt)
for samples drawn from the negative binomial
(representing aggregated dispersion of individu-
als on a larger scale) and Poisson (random disper-
sion) distributions, as well as from a more uni-
formly dispersed population assuming the spatial
variance to be 0.5 times the mean abundance. In
all cases, CV(Xt), due to spatial variance alone,
clearly decreased with sample size (Fig. 1). Quite
expectedly, samples forming aggregated distribu-
tions yield higher error variability than samples
from random or uniform distributions which both
produced slopes of – 0.5 (i.e. b = 1 in Taylor power
plots). If it is generally true, as suggested by Taylor
et al. (1978), Rosewell et al. (1990) and Hanski
et al. (1993) among others, that in most popula-
tions the dispersion of individuals in the field is
clumped, spatially inadequate samples may pro-
duce significantly biased estimates of population
variability, even with very high sample sizes, if
the sampling unit was too small to control for this
spatial pattern.

The situation may, however, be more compli-
cated than shown in Fig. 1 because the dispersion
pattern may vary with density. At the scale of a
uniform sampling area, dispersion is more likely
to be uniform at a high density than at a low one.
In very dense local populations, most or all suit-
able sites may be occupied. Territorial behavior
(non-overlapping home ranges) leads to uniform
dispersion in a lower relative density as compared
with non-territorial species. In less dense popula-
tions, there is space for random and aggregated
dispersion. If one compares populations or spe-
cies with largely unequal densities, there is a risk
for even more strongly biased conclusions than
shown in Fig. 1 as dispersion pattern may change
from aggregated to random and/or to uniform as
density increases. If clumpedness decreases (i.e.
the k parameter of the negative binomial increases)
with abundance, slopes less than 2 in Taylor power
plots result in other things being equal. Note, how-
ever, that at some other spatial scale larger than
that of the uniform sampling area, increased den-
sity may lead to increased aggregation since all
animals may congregate in the only available parts
of the landscape that are suitable.
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3.4. Sampling variance in community variability

Summed abundances of several species, i.e. com-
munity samples, are similarly affected by a sam-
pling variance. As already shown for populations,
due to inaccurate sampling (pi < 1), error variabil-
ity can be approximated by the Poisson distribu-
tion. The sums of counts from independent Pois-
son distributions follow this distribution pattern
themselves (McArdle & Gaston 1995). Therefore,
assuming that species vary independently from
each other, we can use the sum of variances of
individual species to estimate variance in a com-
munity sample. In other words, if we had a method
to estimate sampling variance in population counts
then we would also have an estimate of sampling
variance in a community sample in the absence
of interactions.

Community level sample sizes are often very
large, hundreds of individuals, as compared with
single population samples, and the bias caused by
sampling variance is, therefore, obviously smaller.
For example, if pi = 0.8 for all species and ∑Xt. =
100, CV(∑Xt) then becomes 4.5%. It would, nev-
ertheless, be unwise to discount the influence of
sampling variance in community samples because,
even in large samples, error variability decreases
with total abundance; if ∑Xt. = 500 and pi = 0.8,
CV(∑Xt) is 2%. Comparisons between samples
of different sizes may still, therefore, be quite mis-
leading.

Järvinen and Lokki (1978) assessed the effect
of the inexactness of counts on the variability in
species richness and diversity (diversity indices)
in bird community samples. They showed that in
a typical single visit census of birds some 80 to
100% of the species are observed, and that the
variability in species number decreases with in-
creasing census efficiency, pi. Likewise, the vari-
ability in species diversity varies with census ef-
ficiency, and particularly in species-poor commu-
nities, variability is affected if pi is relatively low.
Because the sum of species variance equals the
variance of the sum of counts, there is, counter-
intuitively, no a priori reason to expect that com-
munities with many rare species would show
higher variability than communities with a more
even abundance distribution.

Spatial variance in community samples is a
more complicated problem. Most ecologists de-

Fig. 1. Temporal variability in population samples
resulting from spatial variance in temporally stable
populations if individual are dispersed uniformly (spatial
variance = 0.5 * mean abundance), randomly (spatial
variance = mean abundance) or in an aggregated
fashion (spatial variance > mean abundance). k refers
to the parameter of negative binomial distribution (the
lower the k, the higher the degree of aggregation).

fine and delimit communities based on taxonomic
and spatial criteria: a community comprises popu-
lations of some taxonomically defined group of
species coexisting at a site or in a region, i.e. within
the sampling area. It may be that the spatial scale
of the sampling unit we have chosen differently
reflects the spatial distribution of species. Even if
we defined community using taxonomically strin-
gent criteria, e.g. song bird communities, our sam-
pling area could encompass tens of home ranges
(territories) of one species, but just a fraction of a
home range of another species. Sherry and Holmes
(1985), for example, showed that territory sizes
may differ more than by an order of magnitude
between bird species with approximately equal
body size. The effects of spatial variance on the
temporal variability vary accordingly.

4. Removing sampling variance

It is also perfectly possible that the data we have
gathered is affected by both types of sampling
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variances. This combined variance is likely not
additive, i.e. it is not simply a sum of two vari-
ance components, but there is an interaction be-
tween spatial variance and the variance due to in-
exactness of the counts. The spatial variance, we
observe, is by necessity influenced by the sam-
pling efficiency as e.g. completely uniformly dis-
persed population may appear randomly dispersed
when pi < 1. Likewise, spatial variance may af-
fect sampling probability, e.g. pi being higher in
hot-spots than in low density areas.

In most cases, therefore, we have no means to
separate the effects of the two sources of the sam-
pling variance, but their effects must be estimated
simultaneously. There are sampling methods
where either (very seldom both) source of the sam-
pling variance is relatively small. Typical large-
scale surveys such as the North American breed-
ing bird survey (Robbins et al. 1986), the Finnish
type line transect method for censusing and moni-
toring land birds (Järvinen & Väisänen 1983), the
wildlife triangle scheme in Finland (Lindén et al.
1996), and the British butterfly monitoring scheme
(Pollard & Yates 1993), encompass such large
areas that the spatial variance in the populations
of many species becomes averaged out, and all
that remains is the inexactness of the counts. The
territory mapping method (Anon. 1970) for esti-
mating densities of breeding birds is considered
very accurate (Nilsson 1977, Enemar et al. 1979),
but comprehends spatially rather limited sampling
units, and therefore temporal variability estimates
are beset by spatial variance. A rule of thumb could
be that if populations are spatially aggregated, as
most natural populations obviously are, sampling
units should be at least an order of scale larger
than the scale of aggregation to avoid large bias.
This, naturally, requires knowledge on the dis-
persion and its scale, which in turn means repli-
cation in space.

As discussed above, both sources of sampling
variance generate patterns of decreasing tempo-
ral variability with the mean abundance. Low tem-
poral variability in density tends to imply that
density-dependent processes are operating (Han-
ski & Tiainen 1988, Hanski & Woiwod 1993).
Empirical studies have shown that slopes in the
Taylor power plots for terrestrial vertebrates, birds
in particular, are smaller than for invertebrates
(Hanski 1990). Low values of b, i.e. sharply de-

creasing variability with mean abundance, have
been interpreted in terms of strong population
regulation in birds (via territoriality, for exam-
ple), but sampling error alone may produce such
slopes. It would therefore be important to sepa-
rate sampling variability from true variability.

If the counts (Xti) have been replicated (i =
1...n) at each time period t then sampling error
can be estimated and removed (Link et al. 1994,
McArdle & Gaston 1995, Stewart-Oaten et al.
1995). There are two possibilities: replication in
space (more sampling plots) and in time (more
samples per a plot). Link et al. (1994) compared
the cost efficiency of replicating in time vs. in
space, and concluded that replication in space is
better in most situations (see also McArdle &
Gaston 1995). Replication in space adds to the
number of (independent) observations and still
enables the sampling variance to be estimated.

After adequate replication, it is then in princi-
ple possible to use ANOVA techniques of vari-
ance component estimation to estimate the within-t
(the one that we want to remove) and among-t
(temporal variance that we want to estimate with-
out error) variance. Observed variance then be-
comes:

var(logXti) = var(logNt) + var(logX.i), (2)

where the last term refers to within-t variance of
the counts in each replicate i. The true temporal
variance, var(logNt), can then be solved. If any of
the Xti values are zeros then some log(Xti)’s re-
main undefined and the analysis must be per-
formed on the untransformed data. The estimated
var(Nt) can then be converted to a CV(Nt) (see
McArdle & Gaston 1995).

Link et al. (1994) analyzed data on 98 species
from the North American breeding bird surveys,
and using repeated counts at survey sites removed
the sampling variance. They showed that on av-
erage the sampling variability comprised 36% of
the total variability ranging from 3.5 to 100%. For
14 species more than half of the variation in counts
was attributable to sampling variance. The degree
in error was clearly more in less abundant species.

Even if Xt’s are not replicated at each t it is
still possible to separate the sampling variance
from ‘true’ temporal variance, but only if we are
prepared to make assumptions on the distribution
of Xt (Järvinen & Lokki 1978, McArdle & Gaston
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1995). If we assume that Xt is distributed as a nega-
tive binomial then we can estimate the propor-
tionate variation (Samways 1990), CV2(Nt), by the
moment estimator:

CV2(Nt) = CV2(Xt) – 1/x,  (3)

where x is the mean of Xt. It should be noted that
the negative binomial covers all cases where dis-
tribution is aggregated or random (Poisson distri-
bution is a special case of a negative binomial
with c = 1/k = 0). If we assumed that the distribu-
tion of Xt is lognormal then we must estimate
CV(Nt) differently (see McArdle & Gaston 1995).

If a population is completely stable (CV2(Nt)
= 0), then all the variability is because of the sam-
pling variance. From Eq. 2 we see that the ob-
served variability CV(Xt) then equals √1/xt, which
is the amount of error variability. As shown be-
fore, if the sampling variance is alone caused by
inexactness of the counts, the variability that fol-
lows can be estimated as √(1 – pi)/piNt. It can
clearly be seen that this variability term equals
√1/xt if pi = 0.5. This is not surprising since a nega-
tive binomial distribution can be thought of as a
Poisson variable Xt, whose expected value is from
gamma distribution (McArdle & Gaston 1995).
If we were sure that all variability is because of
the inexactness of the counts and that pi is very
different from 0.5, then we obviously should use
the term √(1 – pi)/piNt to estimate error variability
rather than the proportionate variation.

These methods are sensitive to assumption of
the distribution of Xt and to assumption of the sam-
pling efficiency, pi, respectively. If we want to
test the appropriateness of the assumptions we
would need to replicate sampling in time or in
space. As already discussed above, in this case
we have more direct and reliable methods of esti-
mating sampling variance.

5. Examples

5.1. Does density vary more in northern bird
communities than in southern ones?

Gaston and McArdle (1995; see also Stewart-
Oaten et al. 1995) reviewed a number of patterns
in the magnitude of temporal variability of popula-
tions and the evidence that exists for them. Be-

cause of the methodological drawbacks, most, if
not all, empirical studies of such patterns are
plagued with sampling errors and must, therefore,
be interpreted with caution. We consider only
some examples. We first deal with the classical
question of a latitudinal variation in community
variability, namely that northern communities are
more variable than southern ones. Then we
reanalyze existing data by removing sampling
variance with a method just described. Finally,
we discuss some recent publications on variabil-
ity in core vs. peripheral populations and source
vs. sink habitats, concluding that not enough cau-
tion has been exercised in interpreting results.

Northern animal populations are considered
less stable than southern ones (MacArthur 1955).
Likewise, variability in northern communities is
considered greater than in southern ones, an idea
which was originally derived from the ‘diversity
begets stability’ principle (Elton 1958, Hutchinson
1959, but see May 1981). We used data on forest
birds, gathered using two different methods: line
transect (Järvinen & Väisänen 1983) and territory
mapping (Anon. 1970). As discussed above, these
two methods exemplify the two types of sampling
variance.

As shown in Table 1, yearly sample sizes in
the data sets varied between 96 and 744 pairs, and
therefore, controlling for the effects of sampling
variance is certainly required. As replicated sam-
ples are not available, we applied the proportional
variation method to estimate temporal variabil-
ity. Original variability values, CV(Xt), show posi-
tive correlation with latitude (r = 0.53, p = 0.03).
After removing the sampling variance, variabil-
ity (CV(Nt)) was even more strongly correlated
with latitude (r = 0.58, p = 0.015; Fig. 2). Note
that in five data sets the sample size was too small
to allow estimation of the temporal variability in
pair numbers in these communities (negative val-
ues of CV(Nt) were truncated zero in Fig. 2). This
particularly applied to mapping data sets. Our re-
sults support Järvinen’s (1979) results that, in the
north, variability is greater than in the south.

Obviously latitude per se can have no direct
effect on the temporal variability, but latitude it-
self is correlated with some other variables which
have direct effects on variability. Järvinen (1979)
concluded that environmental (climatic) unpre-
dictability increases northwards and mainly causes
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the pattern. It is notable that Noon et al. (1985)
found no support for northward increasing vari-
ability in North American bird communities. A
possible explanation for this discrepancy is the
different latitudinal range between studies. Järvi-
nen (1979) particularly contrasted data from the
temperate zone with those from the boreal. Also
our data suggest that variability is high in the
northernmost data sets, and relatively low and
constant among sub-boreal bird communities
(Fig. 2). Very little data in the Noon et al. (1985)
study originated from the boreal zone.

5.2. Variability in central and peripheral
populations

It has often been stated that populations at the edge
of a species’ range are less subject to density-de-
pendent factors than those at the center, resulting
in lower temporal variability in centrally located
populations (e.g. Thomas et al. 1994). For exam-
ple, Curnutt et al. (1996) suggested that popula-
tions of sparrows in North America varied more

Table 1. Data sets used in studying the correlation between density variability and latitude in forest bird
communities. N refers to yearly average sample size (number of pairs observed) and Size to the area of the
study plot (mapping data, in ha) or to the length of the transect (line transect data, km). Each data covers 4–6
consecutive years. If a study contained more than 6 yrs data, the latest 5 yrs data were selected.
—————————————————————————————————————————————————
Source Latitude, °N N Size
—————————————————————————————————————————————————
Mapping data

Hogstad 1993 63°25´ 180 100
Solonen 1986 61°00´ 367 30
Morozov 1992 58°00´ 108 19.5
Enemar 1966 55°40´ 108 13
Tomialojc et al. 1984 53°22´ 96 25
Tomialojc et al. 1984 53°22´ 154 24
Witt 1974 52°30´ 303 36.8
Williamson & Williamson 1973 51°00´ 317 58

Line transect data
Virkkala 1989 68°00´ 199 8.1
Virkkala 1989 68°00´ 419 11.7
Helle & Mönkkönen 1986 66°30´ 165 11.1
Mäkelä 1991 66°10´ 744 25
J. Inkeröinen & M. Mönkkönen, unpubl. 64°30´ 716 21
E. Rajala, unpubl. 62°47´ 127 3.6
E. Ylinen, unpubl. 62°00´ 132 3.3
T. Kaasalainen, unpubl. 61°23´ 223 4.5
A. Seppälä, unpubl. 60°16´ 181 5.1

—————————————————————————————————————————————————
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Fig. 2. Variability in total density of bird communities
at different latitudes. Triangles refer to mapping data
and circles to line transect data. Filled symbols denote
observed CV(Xt) values whereas open symbols
represent variability (CV(Nt)) after sampling variance
was removed using proportionate variation method.
Note that negative values of CV(Nt) were truncated to
zero.
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in time when close to the edge of their ranges.
This pattern may also be due to sampling error
because mean abundances of edge populations
were lower than those further away from the edge
(see also Brown 1984). Curnutt et al. (1996) used
North American breeding bird survey (BBS) data
which applies a standardised single-visit method.
In each survey, birds are censused on 50 3-min
stops located 800 m apart along roads. As in all
single-visit methods to census birds, sampling
efficiency pi is less than 1. Curnutt et al. (1996)
restricted their analyses to abundances higher than
1.5 birds per site to avoid sampling bias. This is a
strictly arbitrary threshold, however, and as shown
in this study mean sample sizes should be several
tens of individuals if one wishes to avoid the ex-
tensive errors due to inefficient sampling (see also
Link et al. 1994). No effort in Curnutt et al. (1996)
was made to control for sampling variance above
these threshold abundances. Moreover, Curnutt
et al. (1996) replaced zero counts by 0.5. As shown
by Anscombe (1948) and McArdle et al. (1990),
the log(Xt + A) transformation inevitably biases
variability estimates.

It may not be possible at all to gain very firm
conclusions about variability differences between
central and edge populations because so many
variables may change along with the geographi-
cal positions, e.g. climate and other environmen-
tal conditions. Perhaps the best alternative is to
study birth rates, individual survival and site te-
nacity in different populations; variability stems
from these three factors.

5.3. Variability in sink and source populations

The sampling variance, if not taken into account,
may cause serious problems in conservation biol-
ogy as well. For example, in species conservation
efforts, it is of crucial importance to know the areas
or (sub)populations that are the most productive,
serving as a source of surplus individuals to less
productive areas/(sub)populations, called popu-
lation sinks (Pulliam 1988). It has been suggested
that one could identify sink habitats/populations
from sources by higher temporal variability (e.g.
Howe et al. 1991). The problem here is that popu-
lation density in sink habitats is usually lower than
in source patches. If sampling variance is ignored,

this potentially leads to unsubstantiated conclu-
sions and management that proves to be detrimen-
tal to the population; low variability may appear
because of a large sample size alone.

Beshkarev et al. (1994) compared variability
between hazel grouse (Bonasia bonasa) popula-
tions living in source and sink-dominated land-
scapes in NE European Russia, based on 30-yr.
data. They found very little difference in tempo-
ral variability. They suggested that significant
autocorrelation of density with a 1-yr. time lag
would be a more powerful indicator of source
habitats than temporal variability. The yearly sam-
ples of Beshkarev et al. (1994) in the sink-domi-
nated landscape were rather small (8 individuals
on average vs. 49 individuals in the source-domi-
nated landscape), and coupled with pi < 1 of the
line transect method they used, it is not surprising
that no autocorrelation was found in hazel grouse
populations in the sinks; there is simply too much
‘noise’ in the samples.

Concluding, despite the extensive recent lit-
erature on problems involved in measuring vari-
ability in animal populations and communities,
the message seems to a large extent to have been
lost. It is increasingly clear that variability esti-
mates are of little use if sampling variance is not
removed and if thought is not given to how to
interpret and compare variability estimates. Spa-
tial modelling of sampling design could provide
deeper insight into apparent and true temporal
variability in animal populations and communities.
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