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Arguments regarding the appropriate form for the rate at which consumers extract
biomass from resource populations hinge on relative time scales of underlying proc-
esses. Some ecologists argue that, because differential equation models imply instanta-
neous rates of change, time scale arguments do not hold. Here we point out that this
reasoning is fallacious. We define three natural time scales for consumer-resource in-
teractions and demonstrate, using asymptotic methods of analysis, how relative differ-
ences in these scales lead to the formulation of models with qualitatively distinct dy-
namics. Further, we identify time scale and resource heterogeneity assumptions that
constrain the R* competition rule (i.e., the competitor that suppresses the resource to
the lowest density excludes all other competitors), as well as clarify the dichotomy
between Schoener’s models of competition for overlapping and for partitioned resources.

1. Introduction

The relative merits of using discrete versus con-
tinuous time equations to model population proc-
esses is an important issue for both theoretical and
applied population biologists because both ap-
proaches embody different kinds of approximations
and implicit assumptions. Discrete-time difference
equation models, for example, require that we pay
careful attention to the sequencing of events such
as such as survivorship and aging. Reversing such
sequences could lead to fundamental changes in
the stability properties of the population process

being modeled (Wang & Gutierrez 1980).
Inherent in the formulation of continuous-time

differential equation population models is the no-
tion of instantaneous rates of change and how this
notion determines the form of the functional re-
sponse (Holling 1959) in Lotka-Volterra type prey-
predator equations (Lotka 1925, Volterra 1926).
Arditi and Ginzburg (1989), for example, have ar-
gued that when the time scale governing consumer
behavioral processes is much faster than the time
scale governing consumer demographic processes
then a ratio-dependent functional response is most
appropriate. Oksanen, Moen, and Lundberg (1992),
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on the other hand, criticized Arditi and Ginzburg’s
rationale for ratio-dependent extraction with the
claim that time-scale considerations are invalid in
differential equation models because “... differen-
tial equations only deal with instantaneous rates of
change.” In this same paper, Oksanen et al. contin-
ued their criticism with the statement that “One
must either stick to instantaneous rates of change
or switch from differential to difference equations.”

Abrams (1994) following Oksanen et al.’s lead
concluded (p. 1842/3) “A differential equation
model measures instantaneous rates of change, not
yearly averages ... Thus it is fundamentally incor-
rect to argue that the functional response in a dif-
ferential equation model should reflect some time
average of instantaneous processes.” Through these
arguments, Abrams links the fate of ratio-depend-
ent models to an assessment of the suitability of
differential equations as models of biological proc-
esses with disparate time scales. This is unfortu-
nate since the two issues are entirely separate.

The relative merits of using difference versus
discrete equations depends on the processes be-
ing modeled and the temporal resolution of inter-
est (e.g., generation versus intergenerational, daily
versus annual). In this paper, we focus on the ques-
tion of how comparative rates of change of dif-
ferent process at particular time scales decisively
effect the outcome of various population proc-
esses, such as competition, that are modeled us-
ing differential equations. We stress that this use
of differential equations makes no statement about
the relative merits of ratio versus pure resource
dependence in the functional response. In gen-
eral, we expect the functional response to have
ratio-dependent characteristics when the consumer
density is high relative to the resource density and
to have resource-dependent characteristics when
the consumer density is low relative to the resource
density, as is evident in some functional forms
that include the effects of interference competi-
tion (DeAngelis et al. 1975, Frazer & Gilbert 1976,
Getz 1991, 1994 — for additional discussion on
inteference competition see Arditi and Saïah 1992,
Beddington et al., 1975, Getz 1984, Gutierrez et.
al. 1994, Ruxton & Gurney 1992).

The approach we take here is based on both
deterministic and stochastic averaging methods
in dynamical systems (Friedlin 1987, Sanders &
Verhulst 1985) and is inspired by an application

of deterministic averaging methods to a model of
a consumer-resource system (Michalski et al.
1997). In carrying out our analysis, we also re-
visit the question of two consumers competing
for a limiting resource. We demonstrate that the
R* rule (Hsu et al. 1977, Tilman 1990, Holt et al.
1994), which elucidates which of the two con-
sumers competitively excludes the other, only
applies to systems that satisfy the following crite-
ria: the time scales of demographic change in the
consumer and resource population are sufficiently
longer or slower than the time scale at which the
consumer encounters heterogeneity in the distri-
bution of the resource to justify the application of
asymptotic methods.

2. Instantaneous rates

We begin by examining the notion of instantane-
ous rates of change. In biological systems this no-
tion is not as useful an abstraction as it is in the
physical sciences. In both the physical and biologi-
cal sciences rates are typically averages of discrete
events. In the physical sciences, however, the proc-
ess of ensemble averaging generally involves many
orders of magnitude more objects, each with much
less variation in their behavior, than in the biologi-
cal sciences. Thus the coefficients of variation in-
volved with ensemble averages are often inconse-
quential in physical systems (e.g., radioactive de-
cay in kilograms of material or proportion of reac-
tants in liters of solvent), but are invariably a siz-
able fraction of unity and sometimes greater than
unity in ecological processes (e.g., see Hassell et
al. 1991, Pacala & Hassell 1991).

While instantaneous refers to a particular mo-
ment or point in time, an average rate necessarily
involves the notion of an interval rather than a
point in time. To calculate a rate associated with a
repeating event, we need to select an interval or
unit of time and count the number of events oc-
curring over that unit of time. By the above argu-
ment, all rates of repeated events, such as births
and deaths in a population, are averages. Thus
Oksanen et al.’s (1992) criticism of using aver-
age rates in differential equations is tantamount
to criticizing any model, including any discrete
time model, because it is an approximation to re-
ality. Since all models are approximations of re-
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ality, this criticism is vacuous.
Thus the real issue is what model best cap-

tures the processes of interest. In the context of
differential equation models, this raises the ques-
tions of what the appropriate time scales are over
which to average events associated with the proc-
esses of interest. If the scale is too coarse, some
of the faster processes that are central to the ques-
tion at hand may be excluded. If the scale is too
fine, the analysis may be overwhelmed with de-
tails, many of which may be irrelevant to analyzing
the processes of interest. To analyze long term
population trends in macro-fauna and perennial
plants, we should typically choose an annual scale
to calculate average birth and death rates, while
within season distributions of individuals requires
a monthly or even weekly time scale.

Further, the appropriateness of a differential
versus a difference equation model depends on
the system and on the phenomenon under consid-
eration. For example, mortality related processes,
including predation and some types of harvest-
ing, are often best modeled by differential equa-
tion models, while births occurring over a short
period of time during a seasonal cycle are best
modeled using discrete equations. Sometimes it
is most appropriate to combine these two ap-
proaches: for example, when modeling continu-
ous harvesting in age-structured fisheries with
annual spawning events (Getz & Haight 1989) and
modeling discrete generation host-parasitoid in-
teractions when parasitoids redistribute them-
selves within generations respect to the distribu-
tion of their hosts (Rohani et al. 1994).

3. Time scales

We now focus on the question of how time scales
influence the form of observed extraction func-
tions in consumer-resource interactions. In the
absence of consumers, we assume that the dynam-
ics of the resource population are governed by
the differential equation

d
d

R

t
G R

r

= ( ), ,α0
(1)

where R is the resource density, G is a function
with a form that ensures the existence of a stable
equilibrium when the resource is exploited by one

or more populations of consumers, and tr is time
measured in units appropriate for characterizing the
dynamics of the resource. The parameter α0 is as-
sumed to vary stochastically and to be distributed
in time and according to some known probability
density function. Generally, this stochasticity will
reflect environmental effects on the resource.

We assume the dynamics of the consumer
population at densities Ci, i = 1, 2, are determined
by the processes of resource extraction at rates
fi(•) and conversion of resource into consumer
biomass at rates Fi(fi) (Getz 1991, 1993, 1994, 1999).
The extraction functions themselves will depend
on the resource density R and, perhaps, on
stochastic parameters αi so that fi(•) = fi(R, αi), i
=1, 2. Before writing down equations describing
the interaction between these two consumers and
their resource, it is useful to explicitly identify
three time scales (where scales refers to measures
of rates per unit time): the consumer scale meas-
ured in units tc, the resource scale measured in
units tr, and the patch scale measured in units tp.
The first two time scales, as elaborated below,
respectively relate to the reproduction and growth
dynamics of the consumer and resource (e.g., what
is their characteristic doubling time when grow-
ing at low population densities). The third time
scale relates to the temporal patchiness of resource
due to external influences (e.g., tp may be less than
tc if resource abundance is also influenced by long
term climatic cycles and tp may be greater than tc

if resources are transported in heterogeneous
fluxes such as river flows). This temporal patchi-
ness reflects variation at the time scale of the con-
sumptive interaction between consumer and re-
source (i.e., does the consumer experience com-
parable or different densities of resource from one
feeding bout to the next).

Because the extraction rate functions are as-
sumed to be rates per unit consumer, the system
of equations used to model two consumers ex-
ploiting the resource modeled by Eq. 1 normally
take the form
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Of course, we cannot solve Eqs. 2 and 3 until
the time scales are specified.
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The consumer scale is often the longest and
represents the scale at which we can expect sig-
nificant changes to occur in the densities of the
two consumer populations due to the demographic
processes of mortality and natality (this scale is
typically measured in years for vertebrates). As
mentioned above, the resource scale represents
changes in the resource dynamics and may be of
the same order as the consumer for the case of
lions feeding on zebra or may be significantly
faster in the case of catfish grazing on algae (Power
1984). In the latter case, the scale could be meas-
ured in terms of weeks.

Because of its externally driven nature, the
patch time scale can be characterized by stochastic
parameters α = (α0, α1, α2) which, as described in
more detail in the examples considered below, are
a measure of the heterogeneity of the resource as
perceived or utilized by the consumers. For highly
mobile or long lived consumers, this scale meas-
ures how rapidly individual consumers can smooth
out temporal heterogeneities in the resources. This
scale may also reflect the diurnal time scale of the
searching behavior of consumers and could be
measured in terms of hours. On the other hand, if
the consumers are sessile or short lived, then
heterogeneities in the resource, as perceived by
the consumer, may be on a longer time scale than
the resource dynamics itself. An example of this
could be corals feeding on phytoplankton, aphids
feeding on walnut trees, or spruce budworm feed-
ing in balsam fir forests (Ludwig et al. 1978).

The population dynamics of the consumers is
our primary concern, so we use their time scale as
a reference and write tc = t. With respect to this
reference time scale, we use tr = t/ε and tp = t/δ
respectively to denote the resource dynamics and
the patch interaction dynamics time scales. If we
assume that the resource and patch interaction
dynamics are significantly faster (i.e., shorter time
scales) than the consumer dynamics, then this
would be equivalent to assuming that 0 < ε << 1
and 0 < δ << 1. For example, if the consumer,
resource, and patch interaction dynamics time
scales respectively have units of years, weeks, and
hours, then ε = 0.0192 and δ = 0.000 114.

With these new time scales Eqs. 2 and 3 can
be written as:
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As ε and δ approach zero, we can approxi-
mate Eqs. 4 and 5 with a much simpler set of equa-
tions, by temporally averaging these equations
over the probability distribution p(α) of the
stochastic parameters α, provided a set of techni-
cal assumptions are met. These assumptions are
(see Friedlin 1978): (i) the trajectories of the proc-
esses, αi(t), are continuous with probability 1 or
have only finitely many discontinuities of the first
kind in any finite time interval; (ii) a probability
density function, p(α), exists such that for any
Borel set A and indicator function 1A, the rela-

tionship lim ( ( )) ( )
t

o

t

At
t t p

→∞ ∫ ∫=1
1A d dα α α  holds.

The method by which we simplify Eqs. 4 and
5, in letting ε → 0 and δ → 0, depends on whether
ε << δ << 1 or δ << ε << 1. This ordering has
critical consequences for the forms of extraction
functions so derived. For example, if ε << δ << 1,
then on the δ time scale, we can solve Eq. 4 for
the within patch “quasi-steady-state” (e.g. see
Edelstein-Keshet 1988: section 7.2) den-
sity ˜( , )R C α  in terms of the values of C = (C1, C2)
and α. In this case, averaging over the variability
in α as δ → 0 Eqs. 4 and 5 reduce to
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On the other hand, for δ << ε <<1, the effects
of the stochastic patch interaction dynamics on
the growth, extraction, and conversion functions
must be averaged out for given resource and con-
sumer levels. If we let δ → 0 for fixed ε Eqs. 4
and 5 reduce to
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Equating the right hand side of Eq. 7 to zero
allows us to solve for the quasi-steady-state re-
source density ˜( )R C  for any fixed value C. Let-
ting ε → 0 reduces models 7 and 8 to the single
equation

d
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Before continuing with a development of the
theory in the context of two species competing for
the same resources (which leads to a re-evalua-
tion of the so called R* rule — see Tilman 1990),
it may be instructive to illustrate this asymptotic
approach by demonstrating how Schoener’s (1978)
models of competition for partitioned and for over-
lapping resources arise out of time scale arguments
respectively used to derive Eqs. 6 and 9.

4. Schoener’s models

Consider the case where the functional responses
fi, i = 1and 2, are type I with no satiation (i.e., fi =
αiR,) and the conversion functions Fi, i = 1, 2,
have the linear form Fi = aifi – bi. Assume that the
resource growth function in Eq. 1 has the form
G(R, α0) = α0 – λR and α0 is a stochastic input: for
example, seeds falling on the ground with prob-
ability α0 and subsequently removed at a constant
rate λ (by fungi, bacteria, and incidental verte-
brate and invertebrate consumers). Also assume
that the remaining stochastic variables αi, i = 1, 2,
have either a valueα̂ i

 with probability pi or are 0
with probability (1 – pi). Then for the case in which
the resource dynamics are much faster than the
patch interaction dynamics (i.e., ε << δ << 1), the
resource equilibrium
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C C
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is obtained locally in each temporal patch before
the heterogeneities across patches can be averaged
out. After integrating this expression over the de-
fined binomial probabilities Eq. 6 reduces to
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whereα0 is the average value of α0

On the other hand, for the case in which the
patch interaction dynamics are much faster than
the resource dynamics (i.e., δ << ε << 1), the re-
source equilibrium
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is obtained globally after the heterogeneities
across patches have been averaged out. Hence Eq.
9 reduces to
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Eqs. 10 and 11 are models proposed by
Schoener (1978) that represent two consumers com-
peting for a resource that they respectively (i) par-
tition in time and space, and (ii) shared completely
in space and time. Thus we see, in the context of
resources exploited by consumers with relatively
long demographic times scales, how differences in
the time scales of the resource and consumptive
interaction dynamics lead to fundamentally differ-
ent types of consumer-resource interactions.

Eqs. 4 and 5, with the functions fi, Fi, i =1, 2,
and G as defined in this section, thus represent a
two parameter (ε and δ) generalization of the
Schoener models such that Eqs. 10 and 11 respec-
tively represent two different specific cases that
are obtained through appropriate limiting proc-
esses. Hence, by manipulating the particular val-
ues of the parameters ε and δ, one can obtain a
competition model that represents a partial shar-
ing and partial partitioning of the resource between
the two competitors, where the degree of sharing
and partitioning depends on the relative values of
ε and δ.

5. The R* rule

We now turn to the issue raised prior to the
Schoener example of how the methods use to de-
rive Eqs. 6 and 9 help address the question of the
effects of time scales on the coexistence or com-
petitive exclusion of two species exploiting the
same temporally varying resource. For this pur-
pose, we define the two quantities Ri*, i = 1, 2, as
the temporal average of the resource density when
the resource is exploited solely by consumer i. In
the absence of temporal heterogeneity, Ri* corre-
sponds to the resource density at the equilibrium
of Eqs. 2 and 3 when the resource is exploited
solely by consumer i (Hsu et al. 1977, Tilman
1990). When heterogeneity exists, the Ri* are de-
fined as follows. If the resource dynamics are
much faster than the patch interaction dynamics
(i.e., ε << δ << 1) then

R R C p1 1
* *˜ ( , ),= ( ) ( )∫ 0 dα α α ,
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where (C1*, 0) is an equilibrium of Eq. 6. On the
other hand, if the patch interaction dynamics are
much faster than the resource dynamics (i.e., δ
<< ε << 1) then R R C1 1

* *˜ ( , )= ( )0 , where (C1*, 0)
is now an equilibrium of Eq. 9. The same expres-
sions apply with an appropriate change of sub-
script for R2*.

In the absence of variability, Hsu et al. (1977)
and Tilman (1990) demonstrated that the con-
sumer with the smaller Ri* competitively displaces
the other consumer. This result has been extended
to systems where competition is apparent rather
than direct (Holt et al. 1994). In the presence of
variability, however, the existence of an R*-like
rule depends on the time scale of the variability.
Specifically, if the variability defines the fastest
time scale (δ << ε << 1) an R* rule still applies
and its existence can be explained by the fact the
patch variability is averaged out during the fast-
est time scale. After averaging, the dynamics is
deterministic on the intermediate resource and

slow consumer time scales and the classical R*
analysis applies (Hsu et al. 1977, Tilman 1990).
The outcome of competition, however, still de-
pends critically on the distribution of the variabil-
ity, which must be taken into account before the
region of parameter space in which consumer 1
or 2 wins can be calculated.

When the variability evolves at a slower time
scale than the resource (ε << δ << 1), the Schoener
partitioned-resource model (Eq. 9) provides an ex-
ample of an asymptotic analysis where consum-
ers may coexist and, hence, an R*-like rule no
longer applies. Numerical simulations using
Schoener’s model (Eqs. 9 and 10) with specific
parameter values (Fig. 1) illustrates the two cases
in point (i.e., δ << ε <<1 and ε <<δ << 1). Shad-
ing in Fig. 1 provides a graphic illustration of the
failure of an R*-like rule for the case δ << ε << 1
(Fig. 1A) and the existence of an R*-like rule for
the case ε << δ << 1 (Fig. 1B). Specifically, when
the patch interaction dynamics are much faster

Fig. 1. Bifurcation diagrams are plotted for consumers modeled by Eqs. 4 and 5 with unsatiated type I intake
functions and a linear conversion function in an extremely variable environment (i.e., Schoener’s (1978) eqs. 10
and 11 with parameter values a1 = a2 = 0.5, ˆ , ˆ. .α α1 20 1 2 0= = , b1 = 0.1, b2 = 0.5, α0 10= , and λ = 1). The
horizontal and vertical axes respectively represent the probabilities p1 and p2 that consumers 1 and 2 are able
to extract the resource at a maximal rate. The shading represents the values of |ln R1*/R2*|, where the lighter
shading corresponds to values closer to 1. Diagram A depicts the limiting situation for the case ε << δ << 1. The
dotted line represents points in the parameter space where R1* = R2*. Because the two competitors can coexist
in part of the parameter space, ther R* rule does not apply. Diagram B depicts the limiting case δ << ε << 1.
Because the solid line both represents points in the parameter space where R1* = R2* and separates the regions
where 1 and 2 win, it follows that the R* rule applies.
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than resource dynamics, so that heterogeneity is
essentially smoothed out before consumption
takes place (Fig. 1B), then the R* rule applies and
the boundary between the 1-winning and 2-win-
ning regions is the line R1*/R2* = 1. When the
resource dynamics are much faster than patch in-
teraction dynamics, so that heterogeneity is only
smoothed out after consumption has taken place
(Fig. 1A), then the R* rule no longer applies and
a region of coexistence now appears in the pa-
rameter space under consideration. Interestingly,
the line of isosuppression (the dotted line repre-
senting the points R1*/R2* = 1) is closer to the
boundary of the region where 2 wins than where
1 wins. Further, coexistence occurs for much
greater values of the ratio R1*/R2* > 1 than for
values of the ratio R2*/R1* > 1.

6. Stochastic input

 In deriving the Schoener equations, we made the
assumption that the functional responses fi, i = 1
and 2, are linear. More realistic functional re-
sponses include a notion of satiation: viz., fi = αiR
for R < ωi/αi and fi = ωi. In this case, the analysis
is more complicated and richer systems behavior
is expected. We analyze this new case assuming,
as we did in deriving the Schoener models, that
the resource growth rate function has the same
stochastic form G(R, α0) = α0 – λR, and the con-
version functions have the linear forms Fi = aifi –
bi, i = 1, 2. To keep the analysis simple, we as-
sume that only the resource input α0 is a stochastic
variable — that is, αi, i = 1, 2 are constants — and
is Gamma distributed in time: that is α0 has the
distribution function

f
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ev
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( )0 0
11

0= − −

Γ
, (12)

where Γ is the Gamma function. The mean µ and
variance σ2 of this distribution satisfy (Feller 1966)
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Under the assumptions that consumer 1 sati-
ates at lower resource densities than consumer 2
(i.e., ω1/α1 < ω2/α2 — see Fig. 2A) and that the
resource variability evolves at the slower time

scale ε << δ << 1, the resource equilibrium
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is obtained locally in each patch before the
heterogeneities across patches can be averaged
out. After integrating over the gamma distrib-
uted probabilities defined by Eq. 12, Eq. 6 be-
comes

d

d
d

d

d
d

C

t
a C

C C
p

a C p b C

C

t
a C

C C
p

a C
C

A

A

A

1
1 1

0 1

1 1 2 2
0

0
0

1 1 1 0 0 1 1

2
2 2

0 1

1 1 2 2
0

0
0

2 2
0 1 1

=
+ +

( )

+ ( )

=
+ +

( )

+ (

∫

∫

∫

∞

α α
λ α α

α α

ω α α

α α
λ α α

α α

α ω

γ ν

γ ν

γ ν

,

,

,

–

d

– ))
+

( )

+ ( )

∫

∫
∞

α
λ α

α α

ω α α

γ ν

γ ν

2

2 2
0 0

2 2 2 0 0 2 2

C
p

a C p b C

A

B

B

,

,

d

d –

Note that after integrating over input hetero-
geneity, the intake rates of both consumers, when
measured at the consumers’ time scales, are no
longer type I functional responses (i.e., linear until
saturation is reached), but are smooth compensa-
tory functions (i.e., type II functional responses).
In this time scale scenario (ε << δ << 1), coexist-
ence is possible between an efficient consumer
that produces a low Ri* but satiates at low resource
densities and a consumer that produces a higher
Ri* but satiates at a higher resource densities (i.e.,
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their type I intake responses “cross”) (Fig. 2A).
When the variance of the resource input is high
relative to the mean resource input, coexistence
breaks down and the consumer with the higher
satiation level dominates (Fig. 2B). When the
variance of the resource input is low relative to
the mean resource input, coexistence also breaks
down and the consumer with the lower Ri* domi-
nates (Fig. 2B). As in Fig. 1, the quantity |ln R1*/
R2*| is plotted (contour shading in 2B, surface plot
in 2C) for different values of the the mean µ and
coefficient of variation σ/µ of the Gamma distri-

bution of α0 (see Eqs. 12 and 13) to demonstrate
that a R* like rule does not apply. Further the line
of isosuppression (dashed line in Fig. 2B) does
not need to lie within the coexistence region.

In sharp contrast, as with the Schoener mod-
els, when the resource variability or patch inter-
action dynamics is faster than the demographic
dynamics of the resource (δ << ε << 1), the vari-
ability can be integrated out and analysis of the
resulting deterministic model implies that the con-
sumer with the lower Ri* always dominates (Hsu
et al. 1977, Tilman 1990).

Fig. 2. The intake functions are plotted in terms of resource density (A). The bifurcation diagram contour (B) and
surface plots (C) of the values of |ln R1*/R2*| for consumers with satiated type I extraction functions and linear
conversion functions are plotted in terms of the mean µ and coefficient of variation σ/µ in an environment where
the input of resources α0 is Gamma distributed (see Eqs. 12 and 13). — A: Extraction function 1 applies to a
consumer that produces a relatively low R1* but satiates at low resource densities, and extraction function 2
applies to a consumer that produces a higher R2* but satiates at higher resource densities than is the case for
extraction function 1. — B: The horizontal and vertical axes respectively represent the mean resource input and
the coefficient of variability of this input. The solid lines demarcate the coexistence from the exclusionary re-
gions. The dashed line represents points in the parameter space where R1* = R2*. Parameter values in both
plots are given by: a1 = a2 = 0.4, α1 = α2 = 1.0, b1 = 0.10, b2 = 0.152, ω1 = 1.0, ω1 = 4.0, and λ = 1.
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7. Conclusion

Time-scale arguments if not explicitly incorpo-
rated into population models, are implicitly im-
plied by the understanding that all parameters rep-
resent the average values of processes measured
over appropriate intervals of time. Although we
kept our analysis simple by allowing time-scale
ratios to become infinite (i.e., letting ε → 0 and δ
→ 0), approximation theory (Sanders & Verhulst
1985, Freidlin 1978) allows us to infer properties
of models with finite but large time-scale ratios.
In fact, coexistence of consumers partitioning a
resource that has a finitely faster time-scale than
the consumers has been obtained in the context of
difference equation models (Loreau 1992).

Through the analysis presented here, we ob-
tain insights into what types of time scales lead to
the emergence of resource partitioning in consum-
ers exploiting a patchily distributed resource. We
also gained an understanding of the time-scale
conditions under which an R* rule for the coex-
istence of consumers applies to these systems. The
first example considered here provides us with
additional insights into the underlying difference
between Schoener’s (1978) two types of competi-
tive interaction models. The second example pro-
vides some sense of the trade off the size of the
mean and the variance around the mean in facili-
tating the coexistence of two competitors with
satiating functional responses. Finally, our analy-
sis suggests that diversity in competitive systems
is maximized when heterogeneity evolves at an
intermediate time scale and the coefficient of vari-
ation (i.e., σ/ν; see Fig. 2B) in the resource distri-
bution is not too extreme.
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