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The genetic architecture of fluctuating asymmetry (FA) as an estimate of developmen-
tal instability (DI) has received much attention in the recent literature. Although some
studies report significant heritabilities of FA (h2

FA) and DI, generally heritability esti-
mates are low. Summarizing available estimates in a recently performed fixed effects
meta-analysis has provoked a lot of discussion. One objection is that heritabilities in
general are population and even trait specific, and that they are influenced by a number
of stochastic processes. Summarizing available information by an average value has
therefore only limited relevance. Meta-analyzes should in addition attempt to model
the underlying stochasticity and mean values should be accompanied by a measure of
variability (i.e., random effects model). In this paper, I explore and apply a Bayesian
method, hierarchical modeling, to model between-population and between-trait het-
erogeneity in h2

FA, taking estimation accuracy into account. The analysis confirms the
low values of h2

FA, with a 95% confidence interval ranging between 0.009 and 0.104. In
addition, between-species and -population differences in heritabilities were much higher
than between-trait heterogeneity, indicating that the weak genetic effects relative to
environmental influences and sampling error affect different traits in a comparable way.
Although at present it is difficult to analyze how different potential influential factors
contribute to the variation in h2

FA, Bayesian modeling can provide a valuable statistical
tool to model the underlying stochasticity of genetic parameters in general.

1. Introduction

Recently, there has been a great interest in the
heritability of fluctuating asymmetry (FA, i.e.
small random deviations from perfect symmetry;
Ludwig 1932, Van Valen 1962), an estimate of

developmental instability (DI, i.e. the inability of
an individual to buffer its development against
random perturbations, Palmer & Strobeck 1992).
Information on the importance of the genetic ba-
sis of FA and DI relative to other sources of vari-
ation is vital to understand morphological varia-
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tion, the importance of FA and DI in evolutionary
models of natural and sexual selection, and the
suitability of FA as an estimator of genetic and/or
environmental stress at both the individual and
population level. Møller and Thornhill (1997)
performed a meta-analysis and concluded after
considering a number of potential biases that on
average the heritability of FA equals 0.19. How-
ever, other researchers challenged this estimate
for several reasons. Many studies concluded that
the heritability of FA would rather range between
0 and 0.1 or even equal zero (Leamy 1997, Mar-
kow & Clarke 1997, Palmer & Strobeck 1997,
Whitlock & Fowler 1997, Gangestad & Thornhill
1999), a range of values that is supported by many
more recent empirical studies (e.g. Blanckenhorn
et al. 1998, Windig 1998, Van Dongen et al. 1999,
Woods et al. 1999). Furthermore, because indi-
vidual single trait asymmetry is only a very crude
estimate of individual DI, heritability estimates
are expected to be low (Whitlock 1996, Houle
1997). In addition, heritabilities are population and
trait specific and are affected by external factors
that influence genetic variation like population his-
tory, breeding structure, intensity and direction
of selection, mutation and genetic drift (e.g. Hoff-
mann & Parsons 1991, Houle 1998, Falconer &
Mackay 1996, Pomiankowski 1997, Swaddle
1997). In addition, heritabilities estimate the rela-
tive importance of additive genetic variance
against non-additive and environmental variance,
all of which may vary between populations and
traits (Falconer & Mackay 1996). As a conse-
quence, it is very likely that heritabilities differ
between species, populations and traits (see Møller
& Thornhill 1997 for an explicit test). Therefore,
a study aiming to summarize the available knowl-
edge on the heritability of FA should attempt to
model this between-population and between-trait
heterogeneity and in addition estimate the distri-
bution of hypothetical underlying parameters from
which this heterogeneity originates. This comes
down to a so-called random effects model (Nor-
mand 1999) in contrast to the fixed effects model
applied by Møller and Thornhill (1997).

Bayesian hierarchical modeling is particularly
suited for this purpose (Normand 1999). Bayesian
statistics as opposed to more traditional techniques
consider both the observations and the unobserved
parameters as random variables. In other words,

Bayesian techniques take the uncertainty of the
parameter estimates into account, and a probabil-
ity distribution is used as a fundamental measure
of this uncertainty (Gelman et al. 1995). This as-
pect is especially useful for modeling heritabilities.
A population-level heritability of a trait should
be viewed as a realization of different evolution-
ary forces, many of which are stochastic. There-
fore, if I hypothetically assume that this popula-
tion would evolve a second time under exactly
the same conditions (which is of course not pos-
sible), the realized heritability is likely to be dif-
ferent from the first value just by chance. There-
fore, observed heritabilities (i.e. the parameters
of interest) reflect a sample from a distribution,
and are not fixed as is generally assumed by tradi-
tional statistical techniques. The result of a Baye-
sian analysis is a posterior distribution, which
quantifies the uncertainty (i.e. 95% confidence
interval) about the parameters after the observa-
tions have been made.  Basically, both the data
and a priori information (i.e. in the form of a prior
distribution) are combined to obtain the posterior
distributions. The choice of this prior distribution
is the subjective part of a Bayesian analysis and
has been the subject of many debates (e.g. Royall
1997). In a hierarchical model, heterogeneity in
the parameter of interest can be modeled at dif-
ferent nested levels, taking estimation accuracy
into account. These different levels may reflect
some hypothetical evolutionary context. It is im-
portant to note that Bayesian analyses focus on
estimating posterior distributions of parameters
of interest. They do not aim at testing statistical
significance in the traditional sense. Levels of sig-
nificance or p-values can be defined as the prob-
ability that the outcome of an experiment or ob-
servation could have been more extreme than the
observed outcome, assuming the null hypothesis
is true (Neter et al. 1990). The underlying idea is
that if one would repeat an experiment or sam-
pling procedure many times under exactly the
same conditions (which is often impossible from
a practical point of view) and when the null-hy-
pothesis is correct, that in a proportion, which
equals the p-value of the test, the outcome will be
at least as extreme as the observed one. Thus p-
values take only sampling variation into account,
whereas estimates of heritabilities (among many
other biologically meaningful parameters) are sub-
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ject to other sources of random variation (see
above). Therefore, traditional tests of significance
may be of limited interest or at least underesti-
mate variability in the parameter of interest. In a
Bayesian analysis, parameters are viewed as ran-
dom variables and a priori information (i.e. the
prior distribution) can improve the obtained esti-
mates (Gelman et al. 1995). Such prior distribu-
tion can be obtained from the posterior distribu-
tion of a hierarchical meta-analysis like the one
presented here.

In this study, I used 66 estimates of heritabil-
ity of FA from 12 studies to evaluate between-
species (or between-populations) and between-
trait (i.e. within-population) heterogeneity. Be-
cause this is the first Bayesian study that attempts
to model the heritability of FA, I used weak prior
distributions that reflect the lack of a priori infor-
mation (Gelman et al. 1995). The results of this
approach are a set of posterior distributions of the
different parameters of interest that can be used
as a prior in new studies of the heritability of FA.
If one would be willing to make the strong as-
sumption that the different populations and traits
involved in this analysis represent an unbiased
sample from all possible populations and traits
and that all heritability estimates are uncon-
founded (which is not the case, see below), the
posterior distribution of the heritability of FA rep-
resents the distribution from which new heritabil-
ity estimates are sampled. The main target of this
paper is to illustrate the potential usefulness of a
Bayesian approach to combine data from differ-

ent sources in modeling particular evolutionary
scenarios. At present there is insufficient data to
put high confidence on the obtained posteriors,
but as novel information becomes available in the
literature this approach will allow to increase our
understanding of the genetic architecture of FA
and DI, and will lead to a more reliable estima-
tion of genetic parameters.

2. Materials and methods

2.1. Hierarchical model and analysis

The statistical model used to describe heteroge-
neity in the heritability of FA contains four levels
and is represented schematically in Fig. 1. At the
top level (i.e. level 1), the so-called hyperpa-
rameters α and β of a beta-distribution determine
the location and shape of the heritability of FA at
the species (population) level. I hereby assume that
the unobserved, average species- (population) level
heritabilities of FA, indicated by θ (i.e. level 2),
can be considered as a sample from a beta-distri-
bution. At this point, I assume that between-spe-
cies and between-population heterogeneity is simi-
lar and can be modeled by one beta distribution.
This may be an oversimplification since species-
and population-level heterogeneity may differ, but
due to a lack of sufficient data it was impossible
to add an additional fifth level to the hierarchical
model. The beta-distribution is a natural choice
to model heritabilities as it is bounded between 0

Fig. 1. Four-level hierarchical model describing heterogeneity in the heritability of fluctuating asymmetry. α and
β represent the so-called parameters of the hyperdistribution reflecting between-species and -population het-
erogeneity in the heritability of FA. The θ values are the species or population specific underlying parameter
values of the heritability of FA where the subscript i indicates the species (or population). The ρ values indicate
the trait specific values indicated by the mi subscript. Finally, the observed heritabilities of FA (h2

i,mi) are modeled
as a sample from the distributions of the model parameters (see text for distributional details).
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and 1 and it can take many different shapes (Gel-
man et al. 1995). Mean and standard deviation of
this distribution can be approximated as α/(α +
β) (further called µ) and 1/(α + β)0.5 (further called
σpop), respectively (Gelman et al. 1995). I used a
normal distribution with mean equal to 1 000 and
standard deviation equal to 1 000 000 as hyper-
prior distributions for α and β, expressing the lack
of prior knowledge on these hyperparameters.
Because α and β should be positive, I took zero
as lower bound for the priors. In this way, the
prior distribution plays a minimal role in the pos-
terior distribution. This choice of prior does im-
ply that I consider very large values of α and β
less likely (Gelman et al. 1995). Varying mean
and standard deviation gave similar results.

At the next level, the species- (population)
specific, unobserved single trait heritabilities of
FA, which are denoted as ρ, are considered to be
a sample from a normal distribution with mean θ
[i.e. average species- (population) specific herit-
ability] and standard deviation σtrait (i.e. level 3).
Obviously, because heritabilities cannot be smaller
than zero I limited the lower bound of these dis-
tributions at zero. As prior distribution of σtrait I
used an inverse gamma distribution with param-
eters equal to 10–4, again expressing our lack of a
priori knowledge (see Gelman et al. 1995 for de-
tails). At the final level (i.e. level 4), the observed
heritabilities (h2

FA) are represented as a sample
from a normal distribution with mean ρ and stand-
ard deviation equal to the observed estimation
accuracy (i.e. σsampling: standard error of the herit-
ability estimate). The lower bound of this distri-
bution was not limited to zero because negative
heritability estimates are generally assumed to be
the result of sampling variation (Lynch & Walsh
1998). The upper bound was limited to 0.637, the
theoretically maximal value of the heritability of
FA (Whitlock 1996, 1998). The normal distribu-
tion is symmetric, whereas the distribution of
heritabilities may deviate from this pattern. How-
ever, other candidate distributions, like the log-
normal, gamma and beta distribution, cannot gen-
erate negative heritabilities. Therefore, the nor-
mal distribution had to be applied, with the main
advantage that parameters are easy to interpret.

The posterior distributions of the parameters
of interest [i.e. α, β (and thus µ and σpop), θ, ρ and
σtrait] were obtained by a Markov chain simula-

tion technique known as Gibbs sampling or alter-
nating conditional sampling (see Gelman et al.
1995 for a good introduction). The basic idea of
this algorithm (and of other Markov chain simula-
tions) is to simulate a random walk in the param-
eter space. The joint posterior distribution is ob-
tained when the simulation converges to a sta-
tionary distribution. The analysis was carried out
in the package WINBUGS (D. Spiegelhalter,
A. Thomas & N. Best, unpubl.). I ran 20 inde-
pendent Markov chains with different and over-
dispersed initial values (i.e. away from their esti-
mated values after convergence). After a ‘burn
in’ period of 2 000 iterations during which the
chains become independent and uncorrelated from
their initial values, I ran 10 000 iterations for each
chain. Only data from the latter iterations were
analyzed such that the posterior distributions will
be based on a total of 200 000 iterations from 20
independent Markov chains. This high number of
simulations was required because of the high de-
gree of autocorrelation and low rate of conver-
gence within the chains, especially for the distri-
bution of α and β and thus of µ and σpop. Visual
inspection of the running quantiles and of Gelman
and Rubin statistics (Gelman & Rubin 1992)
showed that these setting were satisfactory. For ρ
and σtrait the Gelman and Rubin statistics con-
verged to 1 after 2 500 iterations, whereas for µ
and σpop (and also α and β) convergence occurred
after 5 000 iterations. It can therefore be assumed
that the simulated distributions based on the 20
Markov chains reflect a close approximation of
the exact distributions.

Posterior distributions contain all the current
information about the parameters of interest.
These distributions are displayed graphically and
mean, standard deviation, median and 95% con-
fidence intervals are reported (see also Gelman et
al. 1995). Distributions were constructed graphi-
cally from 2.5, 5, 10, 25, 50, 75, 90, 95, and 97.5%
quantiles and spline smoothing in the graphical
package SIGMAPLOT (Version 4.0).

2.2. Selection of studies

A total of 66 heritability estimates of 16 popula-
tions derived from 12 studies obtained after lit-
erature search in Biosys and Current Contents,
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and papers cited in Møller and Thornhill (1997)
and Gangestad and Thornhill (1999) were used in
the analysis (Table 1). I only included studies that
showed a relatively small degree of measurement
error relative to FA and that found no indications
of antisymmetry or directional asymmetry (un-
less corrected for). In addition, studies criticized
earlier were excluded (see Leamy 1997, Markow
& Clarke 1997, Palmer & Strobeck 1997, Whit-
lock & Fowler 1997 for details). Furthermore, only
studies that provided standard errors of the herit-
ability estimates could be included in the analy-
ses. These standard errors were either reported
directly, or were approximated from 95% confi-
dence intervals (CI) by dividing the length of the
CI by 3.92 (i.e. 2 × 1.96). For the Scheiner et al.
(1991) study I included data from one treatment
only (i.e. rearing at 19°) because the flies of the
other treatment represented the same population.
Heritability estimates from males and females of
Sepsis cynipsea were treated as separate popula-
tions because Blanckenhorn et al. (1998) found
indications that heritabilities may differ between
both sexes. Repeating the analyses leaving out
either males or females gave very similar results.

3. Results and discussion

Descriptive statistics and a graphical presentation
of the posterior densities of the six parameters of
interest are given in Table 2 and Fig. 2. The pos-
terior distribution of single trait heritabilities of
FA indicated that most estimates are expected to
fall between 0.009 and 0.104 with an overall mean
of 0.043 (Table 2, Fig. 2). This range closely cor-
responds with that predicted by Leamy (1997) and
Whitlock and Fowler (1997). In addition, several
studies that were not included in this analysis (be-
cause they did not report accuracies of the herit-
ability estimates) appear to follow this range (e.g.
Corruccini & Potter 1981, Parker & Leamy 1991,
Windig 1998, J. J. Windig unpubl.).

Between-species (population) heterogeneity
(SD) is likely to range between 0.016 and 0.046
with a mean of 0.025 whereas between-trait (with-
in-population) heterogeneity was much smaller
(mean = 1.18 × 10–4; 95% CI = 5.0 × 10–6–6.6 ×
10–4) (Table 2, Fig. 2). This relatively low amount
of between-trait variation in the heritability of FA

suggests it is likely to be mainly the result of sam-
pling variation alone. In addition, it suggests that
the genetic background of FA and DI affects the
different traits in a comparable way. However, if
studies would focus on measuring a wide variety
of traits, which is rarely done, a higher degree of
between trait heterogeneity might be discovered.
The studies included here form a mix of analyses
based on parent offspring regressions and sib
rearings. As a result, not all (if not only few) her-
itability estimates are fully unconfounded esti-
mates. This source of variation may have contrib-
uted to the between-study heterogeneity. How-
ever, adding an additional level to the hierarchy
was not performed because of the limited sample
sizes.

A second source of between-species hetero-
geneity may be variation in the accuracy of FA as
estimate of DI. Individual single-trait asymmetry
attempts to estimate a variance (i.e., DI) with two
datapoints. As a consequence FA is only a crude
estimator of DI. Recent studies have shown that
there is substantial between-species heterogene-
ity in the accuracy of FA as estimator of DI (Van
Dongen & Lens 2000), and this heterogeneity may
contribute to between-species heterogeneity in
estimates of the heritability of FA (Whitlock
1996). Ideally, meta-analyses should model the
heritability of DI, yet at present there is insuffi-
cient data available in the literature (Van Dongen
& Lens 2000).

In a recent theoretical approach of the genetic
background of FA, Klingenberg and Nijhout
(1999) showed that small positive heritabilities
of FA could be obtained without any genetically
determined mechanism that stabilizes trait devel-
opment. Their results are based on a threshold
diffusion process with non-linear growth. Slight
random noise added to the model-parameters at
the start of development resulted in low heritabil-
ities of FA whereas noise is independent of the
genotype. Thus, if there is indeed no underlying
genetically determined developmental stability
mechanism that leads to different degrees of indi-
vidual FA, the results presented here would indi-
cate that the degree of non-linear development
and/or noise mainly differs between populations,
but not to the same extent between traits within a
population. To what extent developmental insta-
bility has in itself a (weak) genetic basis or that
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Table 2. Mean, standard deviation, median and 95 % confidence interval of the six parameters of interest based
on the posterior distributions of the hierarchical Bayesian model (see text and Fig. 1 for details).
—————————————————————————————————————————————————
Parameter mean (SD) median 95% CI
—————————————————————————————————————————————————
α 86.8 (59.2) 73.6 14.1–238.4
β 1 807 (805) 1737 445–3541
Mean species level heritability (µ) 0.046 (0.022) 0.043 0.013–0.097
Between species heterogeneity (σpop) 0.025 (0.008) 0.023 0.016–0.046
Between trait heterogeneity (σtrait) 1.2 × 10–4 (1.9 × 10–4) 5.0 × 10–5 5.0 × 10–6–6.6 × 10–4

Trait heritability of FA (ρ) 0.046 (0.025) 0.043 0.009–0.104
—————————————————————————————————————————————————

Hyperparameter β of the beta hyperdistribution
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Fig. 2. Posterior distributions of the six parameters of interest that model heterogeneity in the heritability of FA
(see text and Fig. 1 for details). Distributions are based on a total of 200 000 iterations from 20 independent
Markov chains simulated in WINBUGS.
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the heritability of FA is a by-product of non-lin-
ear development should become a topic of fur-
ther research.

In conclusion, this study shows that Bayesian
statistics offer an interesting way to summarize
available data on heritabilities. In this particular
case, it confirms earlier findings that the heritabil-
ity of FA is low and roughly ranges between 0
and 0.1. Furthermore, hierarchical modeling be-
tween-population and trait heterogeneity indicates
that levels of FA of different traits are influenced
by the same genetical factors, whereas they may
differ to a larger extent between populations. How-
ever, several factors may have contributed to this
heterogeneity and it is at present difficult to ana-
lyze the contribution of each to the variation in
the heritability of FA. The obtained posterior dis-
tributions can be applied as priors in future stud-
ies estimating the heritability of FA. This would
lead to improved estimates. In particular, since
heritabilities are difficult to estimate with high
accuracy even when sample sizes are large, stand-
ard errors are often very large. This may cause
some estimates to deviate substantially from their
underlying parameter-value (i.e. parameter ρ in
Fig. 1) unless sample sizes are taken appropri-
ately large. Making use of the available data, cap-
tured within the posterior distributions and using
these as priors for future Bayesian analyses, the
estimation of heritabilities can be made more ac-
curate in the sense that spuriously high or low
heritabilities with low sampling accuracy will
become shifted towards these priors. The higher
the accuracy of the estimate the weaker relative
the effect of the prior knowledge will become. By
continuously updating the prior distribution when
new (unconfounded) estimates become available,
and possible including other sources of variation
in the heritabilities (species vs. population effects,
confounding factors such as non-additive genetic
variance, hypothetical repeatability), can be ex-
pected to lead to a better understanding of the fac-
tors that determine the genetic architecture of de-
velopmental instability which is estimated by FA.
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