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I consider how adaptive changes in behaviour with population size affect the stability
of the population dynamics. In any given year the behavioural rule of a member of a
single-species population is determined by the value of a certain trait. I allow for the
possibility that this trait value can change from year to year. The number of
descendants left in one year’s time by an individual depends on its trait value, the
values of other population members and the population size. The population
dynamics is modelled as the change in population size from one year to the next. I
focus on a population that is at a fixed point of the dynamics and in which members
adopt the evolutionarily stable trait value for that equilibrium size. I compare the
stability of the population dynamics under the following two assumptions about the
dependence of trait values on population size: (i) trait values do not change from that
at the equilibrium size, and (ii) trait values change so as to be evolutionarily stable for
the current size. In a range of examples, I show that adaptive behaviour tends to
destabilise population dynamics in the sense that stability under assumption (ii)
implies stability under assumption (i). In other words, the region of parameter space
for which there is instability under an adaptive response contains the region of
instability under no response. Various equivalent general criteria for this to hold are
given.

Introduction

As the size, and hence the density, of a
population increases food and other resources
become more scarce. As this occurs population
members may modify their behaviour. For

example, they may exploit previously little used
resources or become more aggressive in com-
petitive interactions, leading to a change in how
food is distributed amongst population members
(e.g. Ens & Cayford 1996). The survival and
reproductive success of population members
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will depend on both population size and behav-
iour of population members. Thus the behav-
ioural response to increased population size will
affect population dynamics (see for example
Sibly & Smith 1985, Sutherland 1996). For
example, it has been suggested that the crash in
population size seen in microtine rodent popula-
tions may due be in part to the increased
frequency of aggressive encounters at high
densities (Begon et al. 1986). In this paper, I am
specifically interested in changes of behaviour
that are adaptive. I model the effect of the
behavioural responses on the stability of the
population dynamics, contrasting adaptive be-
havioural changes with fixed behavioural strate-
gies. The main focus of the analysis is to
determine if and when adaptive changes tend to
produce more unstable population dynamics
than fixed behaviour.

Empirically, it is not always clear whether a
change in behaviour with population density is
adaptive, but there is evidence for such changes.
For example, Moss and Watson (1985) suggest
that the changes in the territorial spacing of red
grouse with population density is adaptive and is
also important for population dynamics. In
theoretical studies a comparison of adaptive
changes with other types of change has been
made in specific cases (e.g. Ives & Dobson
1987, Houston & McNamara 1997). Here I
develop principles and results that apply gen-
erally. I then use these results to analyse four
specific examples. The first two examples deal
with contests between population members over
resources. In Example 1 a contestant chooses its
level of aggression, in Example 2 a contestant
chooses how long to persist before giving up. In
both of these examples if behaviour changes
adaptively with population size, contest inten-
sify as population size increases. Example 3
looks at vigilance behaviour of members of a
group. Example 4 analyses habitat selection
under density dependence. In each of the four
examples it turns out that adaptive behaviour
tends to destabilise the population dynamics. I
am not, however, claiming this to be generally

true: the main purpose of the paper is to
highlight the general issue and to motivate
others to study further cases.

Formulation of the problem

I consider a single-species population. Within
this population the behaviour of an individual is
determined by a single quantitative phenotypic
trait. For example, the trait value might be the
individual’s level of aggression. I assume that
the trait value of an individual does not change
within a year, although it may change from year
to year. In this population the number of
descendants left by an individual in one year’s
time depends on that individual’s current trait
value, the current trait values of other popula-
tion members, and the current population size. I
adopt the following notation. Suppose that the
focal individual has current trait value x, all
other members of the population have the same
current trait value y (which may be different
from x), and the current population size is n.
Then the expected number of descendants left in
one year’s time by the focal individual is
denoted by W(x,y,n) (cf. the fitness generating
function of Vincent et al. 1993 and Cohen et al.
1999). I refer to W as the fitness of this
individual.

In order to analyse population dynamics,
assume that in any given year all population
members have the same trait value. Let

K(x,n) = W(x,x,n) (1)

Thus K(x,n) is the fitness of each population
member when all have trait value x and the
population size is n. Suppose that the common
trait value of population members varies from
year to year, and in any given year is a function,
x(n), of the current population size, n. Then, when
the population is size n, the fitness of a population
member is F(n) = K(x(n),n) The change in fitness
with population size is thus given by

′ = ∂
∂

+ ∂
∂

F n
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For this population, if the population has size n
in one year its size next year is n̂  where

ˆ ( )n nF n= . (3)

I refer to a n0 as an equilibrium size of this
population if it is a fixed point of the dynamics.
Thus if the population is exactly size n0 in a year
it will be size n0 in all subsequent years. I shall
be concerned with cases for which the function
F(n) is a decreasing function of n that is greater
than 1 for small n and less than 1 for large n.
There will then be a unique equilibrium size n0

satisfying F(n0) = 1. In order to determine the
stability of the equilibrium we consider how
population size changes after a small perturba-
tion away from size n0. The standard criterion is
based on the magnitude of dn dnˆ /  at the equi-
librium. Since F(n) is a decreasing function of n
dn dnˆ /  is less than 1, so stability depends on
whether dn dnˆ /  is greater or less than –1. It is
easy to show that the criterion translates into the
following. If

n0F´(n0) > –2 (4a)

then population size tends to n0 as time t increases,
and the equilibrium is stable. Conversely if

n0F´(n0) < –2 (4b)

then population size oscillates away from n0,
and the equilibrium is unstable.

The above analysis applies to any function
x(n) relating trait value to population size. I now
focus on a specific function; the common trait
value of population members in a given year is
the evolutionarily stable trait value appropriate to
the current population size. This function is

defined as follows. Suppose that the population
has size n in a given year. Let all but one member
of this population have trait value y. I refer to y as
the resident trait value. Let the remaining ‘mu-
tant’ population member have trait value x. Thus
this mutant has fitness W(x,y,n). I assume that, for
each given y, there is a unique value of x that
maximises W(x,y,n). I refer to this x as the
mutant’s best response to the resident trait value
y. An evolutionarily stable trait value is such that,
if this trait value is the resident value, then the
best response of the mutant is also this trait value.
I assume that, for every population size n, there is
a unique evolutionarily stable trait value, which I
denote by x*(n). Thus for population size n, if
almost all population members have trait value
x*(n), then the fitness of a mutant is maximised if
the mutant also has this trait value. We have

W x n x n n W x x n n
x

( *( ), *( ), ) max ( , *( ), )= (5)

(cf. Vincent et al. 1993, Cohen et al. 1999).
Consider a population that has size n0 and

trait value x0 at this size where

K(x0,n0) = 1 (6)

and

x*(n) = x0. (7)

By Eq. 6 the population is of equilibrium size.
By Eq. 7, given that the population is this size
and members all have this trait value, no
population member can increase its fitness by
changing its trait value. The main focus of this
paper is to compare the stability of this equilibri-
um under the following two assumptions about
trait values away from the equilibrium size.

Case I: The trait is fixed and takes the value x0

in all years regardless of the population
size.

Case II: If population is size n in a year then the
trait value of all population members is
x*(n) in that year.

I refer to the second case as an adaptive
change in trait value. In the examples that I later
analyse I am not interested in an exact specifica-
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tion of parameters for which the dynamics is
stable and for which it is unstable. Rather I am
concerned with whether stability under one
assumption implies stability under the other. To
this end I define the phrase ‘adaptive change in
trait value tends to destabilise the population
dynamics’ to mean that stability under an
adaptive response implies stability under no
response. This is equivalent to saying that the
region of parameter space for which there is
instability under an adaptive response contains
the region of instability under no response.

In Case I, an individual has fitness F0(n) =
K(x0,n) when the population size is n. In Case II,
an individual has fitness F(n) = K(x*(n),n) when
the population size is n. By condition 4 the
stability of the population dynamics in these
cases is determined by the magnitudes of ′F n0 0( )
and F´(n0) respectively. In particular, if ′F n( )0  <

)( 00 nF ′  then stability in Case II implies stability
in Case I, conversely if ′F n( )0  > ′F n0 0( )then
stability in Case I implies stability in Case II.
Thus adaptive change in trait value tends to
destabilise population dynamics if ′F n( )0  <

)( 00 nF ′ . Since

′ ′ = ∂
∂

F n F n
K

x

dx

dn
( ) – ( )

*
0 0 0 , (8)

adaptive change in trait value tends to destabi-
lise the population dynamics if the right-hand
side of Eq. 8 is negative; that is if the first term
on the right-hand side of Eq. 2a is negative.
Thus by Eq. 2b

adaptive change in trait value 
tends to destabilise population
dynamics

as the population size increases 
the change in fitness due to change
in trait is negative
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(9)

Best group trait value

Consider a population of equilibrium size n0.
Suppose that all population members have trait
value x. Then each population member has
fitness K(x,n0). In this section, I assume that
K(x,n0) is a unimodal function of x with a single

maximum at x = xgroup. This can be regarded as
the optimum trait value if population members
have the same trait value as one another. I refer
to xgroup as the best group trait value. In general
this trait value will not be evolutionarily stable
since in a population with resident trait value
xgroup there will be some other trait value which
will give a mutant that adopts this value higher
fitness. In contrast if all population members
have trait x0 = x*(n0) then each member is
adopting its own selfish optimal trait value given
the trait values of others, but overall fitness will
not be maximised. This difference between what
is best for all population members and what
happens when they behave selfishly is epito-
mised in the ‘tragedy of the commons’. Here it
is at the heart of why adaptive behaviour tends
to stabilise population dynamics.

Suppose that xgroup < x0. Then since K(x,n0) is
a unimodal function of x this function is
decreasing for x = x0. If x*(n) is an increasing
function of n at n = n0 then as population size
increases the change in fitness due to change in
trait is negative. Thus adaptive change in trait
value tends to destabilise population dynamics.
Other possible cases have similar logic and all
can be summarised as follows.

adaptive change in trait
value tends to destabilise
population dynamics

as population size increases from its
equilibrium value  the trait value moves
away from the best group value at 












⇔
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n
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0

(10)

This result will be illustrated in the examples
given later.

Results from game theory

I now use the fact that x*(n) is the evolutionarily
stable trait value to derive two useful subsidiary
results. Recall that W(x,y,n) is the fitness of a
single ‘mutant’ individual in a population with
resident trait value y and size n. Let ∂W/∂x
denote the partial differential of W(x,y,n) with
respect to its first argument, ∂W/∂y the deriva-
tive with respect to the second argument, etc. In
this notation the evolutionarily stable trait value
x*(n) in a population of size n satisfies
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These conditions are sufficient to ensure that
x*(n) is an evolutionarily stable strategy (ESS).
I assume that x*(n) is not only an ESS but is also
continuously stable (Eshel 1983, Taylor 1989).
It is shown in Appendix 1 that under these
assumptions

dx
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n

W

x n
x n x n n
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In particular this relation can be used to infer
whether increasing the population size from its
dynamically stable value of n0 increases or
decreases the evolutionarily stable trait value.
The relation shows that the trait value increases
if and only if an increase in population size
while holding the resident trait fixed means that
a single mutant can increase its fitness by
increasing its trait above x*(n0) = x0.

Differentiating Eq. 1 with respect to x and
making use of Eq. 11 gives

∂
∂

= ∂
∂

K

x
x n

W

y
x x n( , ) ( , , )0 0 0 0 0 . (14)

Then Eqs. 8 and 14 show that adaptive change
in trait value tends to destabilise the dynamics if
either dx*/dn > 0 and ∂W/∂y < 0 or dx*/dn < 0
and ∂W/∂y > 0. Here the derivatives are evaluat-
ed at n = n0 and x = y = x0. This result may be
summarised as follows.

adaptive change in trait
value tends to destabilise
population dynamics

as population size increases from ,  the change in
the fitness of a mutant with fixed trait value  due
to the change in the resident trait value is negative
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Example 1: level of aggression in a
contest for a resource

At the beginning of a year each member of the
population contests a resource with one other

population member. One contestant obtains the
resource. This individual always survives the
contest and leaves V + R(n) expected descend-
ants next year. If the loser survives the contest it
leaves R(n) descendants next year. If the loser
dies it leaves 0 descendants next year. The trait
value of an individual determines its level of
aggression in the contest. Suppose an individual
has trait value x and the opponent has trait value
y. Then the individual obtains the resource with
probability P(x,y) and survives the contest with
probability S(x,y). Thus the expected number of
descendant left is

W(x,y,n) = P(x,y)V + S(x,y)R(n). (16)

R(n) represents future success. Since this
will be influenced by competition with other
population members in the future I assume that
it decreases with increasing n: i.e. R´(n) < 0. I
assume that the probability that an individual
obtains the resource increases with its level of
aggression and decreases with the level of
aggression of its opponent so that ∂P/∂x > 0 and
∂P/∂y < 0. I assume that an individual’s survival
decreases with both its level of aggression and
that of its opponent so that ∂S/∂x < 0 and ∂S/∂y <
0. Finally, I assume that P and S are such that,
for each population size n, there is a unique
evolutionarily stable trait value x*(n) that
satisfies Eqs. 11 and 12 and is continuously
stable.

Note that by the assumptions on R and S we
have ∂2W/∂x∂n > 0. Thus by condition 13 the
evolutionarily stable level of aggression increas-
es with population size.

Now consider dynamic stability. By the
assumptions on P and S, ∂W/∂y < 0, so that by
Eq. 14, ∂K/∂x < 0. Thus, since dx*/dn > 0,
condition 8 implies that adaptive change in trait
value tends to destabilise the population dynam-
ics. This result can also be seen by considering
the best group trait value xgroup. If all population
member have the same trait value x then by
symmetry each wins a contest with probability
0.5. Since mortality increases with x, fitness of
population member is maximised by taking x to
have its minimum value; i.e. xgroup = 0 (Dawkins
1976). Thus xgroup < x*(n0) and criterion (10)
implies that adaptive change in trait value tends
to destabilise population dynamics. In this
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example population members would do best if
they settled contests without aggression, but such
a strategy would not be evolutionarily stable. As
population size increases, the benefits from the
future, R(n), decline, and it pays to become more
aggressive in the current contest. This contributes
to the decline in fitness of population members
with increasing population size.

Example 2: persistence in a contest for
a resource

Resources such as food or mates are scattered in
the environment as discrete items. Members of
the population search for these items. A propor-
tion θ(n) of the items found by a searching
individual are contested by another population
member. If an item is not contested the individu-
al obtains the item. If the item is contested the
contestants play a war of attrition (see e.g.
Maynard Smith 1982) in which each chooses
how long to wait for the opponent to give up.
The contestant that waits the longest obtains the
item. Having obtained an item or given up in a
contest an individual recommences searching
for further items. The mean time to find the next
item is τ. The number of descendants left next
year by an individual is an increasing function
of the mean rate at which item are obtained.

In this example, the trait of an individual
specifies how long it is prepared to wait for a
contested item. Motivated by the solution to the
war of attrition, I assume that waiting times of
an individual are exponentially distributed and
take the individual’s trait to be the mean of this
distribution. On encountering a contested item
an individual does not know the precise waiting
time of its opponent. The longer that the
individual waits the more likely it is to obtain
the item, but the more time is lost which could
have been spent in search for other items. The
optimal waiting time for a given individual
clearly depends on the waiting times of other
individuals. Population members are thus in-
volved in a game against one another. The
optimal waiting time also depends on the
proportion of items that are contested: if it is
easy to find other uncontested items it is not
worth wasting too much time on the present

item (cf. McNamara & Houston 1989). I sup-
pose that the probability that an item is contest-
ed, θ(n), increases as population size increases.

Suppose that almost all population members
contest an item for an exponential time with
mean y; that is the resident trait is y. Consider a
contest between a mutant with trait x and a
resident. Then it is easy to show that the mutant
wins the contest with probability x/(x + y) and
the mean duration of this contest is xy/(x + y).
The mean rate at which the mutant obtains items
is the probability that an item is obtained
divided by the mean time between encountering
successive items (see e.g. Houston & McNama-
ra 1999). This rate is thus

W x y n
n n x x y

n n xy x y

rate ( , , )
( ) ( ) / ( )
( ) ( ) / ( )

=
− + +
+ + +

1 θ θ
τ θ θ

. (17)

Since the number of descendants W increas-
es with Wrate we can work with Wrate rather than
W in determining evolutionarily stable trait
values and the effect of behaviour on dynamics.

From the above form of Wrate it is straightfor-
ward to show that Eq. 11 has unique solution

x n
n

*( )
( ( ))

=
−

τ
θ1

. (18)

For this solution there is equality in Eq. 12
rather than an inequality. Nevertheless the
evolutionary stability conditions appropriate to
the war of attrition (Maynard Smith 1982) are
satisfied. Furthermore, the solution is continu-
ously stable. I, therefore, take it to be the
evolutionarily stable trait value.

Since θ(n) increases with n, Eq. 18 shows
that the trait x*(n) increases with increasing n.
Thus under adaptive behaviour, population mem-
bers become more persistent over contested
resources as uncontested resources become scarc-
er. The increased persistence results in popula-
tion members wasting more time and, as is
easily verified from Eq. 17, lowers the rate at
which items are obtained. Thus as population
size increases, adaptive change in trait value
contributes to the decline in the fitness of
population members and tends to destabilise
population dynamics. This result can also be
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seen by looking at the best group trait. If all
population members have the same trait value x
each wins a contest with probability 0.5 but the
least time is wasted by taking x = 0. Thus xgroup =
0 < x*(n0) and condition 10 applies.

Example 3: vigilance behaviour

Many bird species tend to feed in groups. There
is evidence that the vigilance behaviour of a bird
in a group decreases as the size of the group
increases (e.g. Abramson 1979, Caraco 1979,
Ekman 1987). A number of papers have sought
to explain this phenomena in terms of the
adaptive behaviour of group members. In partic-
ular the models proposed by Pullium et al.
(1982), Lima (1987), and McNamara and Hou-
ston (1992) share the following common fea-
tures. It is assumed that predator attack rate and
the food supply do not depend on group size; an
assumption that is unlikely to hold precisely in
practise. It is assumed that a bird can only
increase its rate of feeding by decreasing its
level of vigilance for predators. The predation
risk to a feeding bird decreases as its own level
of vigilance increases and as the vigilance level
of other group members increases (the many
eyes effect). Predation risk also decreases as
group size increases because an attacking preda-
tor is less likely to select that individual (the
dilution effect). Group members are involved in
a game; each bird gains an advantage if others
increase their level of vigilance allowing the
given bird to decrease its own vigilance level
and hence increase its feeding rate. These
models all predict that the evolutionarily stable
level of vigilance of a group member decreases
with group size, in qualitative agreement with
observations.

In general there may be no direct link
between population size and group size. It is
plausible, however, that in some circumstances
group size will tend to increase with population
size. Assuming this relationship to hold we can
then ask whether the adaptive change in vigi-
lance with group size tends to destabilise
population dynamics. To formalise this, assume
for simplicity that members of a population of
size n feed in groups of size g(n). Here g(n)

increases as n increases. Take the behavioural
trait of an individual to be its feeding rate. Let
W(x,y,n) be the fitness of an individual that feeds
at rate x when other group members feed at rate
y and the group size is g(n). The theoretical
models mentioned above then predict that the
evolutionarily stable trait value x*(n) (feeding
rate) in a population of size n increases as n
increases. In a group the predation risk to a
given individual increases as the feeding rate of
other group members increases. Thus W(x,y,n)
decreases as y increases, condition 15 holds and
adaptive change in trait value tends to destabi-
lise the dynamics.

In this example, individual population mem-
bers gain an advantage from an increase in
foraging group size per se, but the adaptive
response to the increase acts to decrease fitness
below what it would have been had vigilance
levels been maintained.

Example 4: habitat selection

This model is based on one of the models of
habitat selection of Brown (1997). Members of
a population can forage in one of two habitats.
While foraging in habitat 1 an animal is safe
from predators. Habitat 2 has a better food
supply than habitat 1 but has a predation risk of
µ per unit time spent foraging there. The rate at
which food can be found in a habitat is a
decreasing function of the number of animals on
that habitat. Population members forage for a
time period of length T. During this time period
each population member chooses the proportion
of time spent in each habitat.

If an animal is killed during the period it
leaves no descendants next year. If the animal is
not killed and its total net energy intake is e it
leaves R(e) descendants next year.

Take the behavioural trait to be the propor-
tion of time spent in habitat 2. Suppose that the
population size is n and the resident trait value is
y. I assume that at any time there are n1 = (1 –
y)n animals in habitat 1 and n2 = yn animals in
habitat 2. This results in net energy intake rates
in the two habitats of H1(n1) and H2(n2) respec-
tively where H1 and H2 are decreasing functions.
Thus a mutant with trait value x has total net
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energy intake during the time period of

e(x,y,n) = [(1 – x)H1(n1) + xH2(n2)]T.

This mutant survives the period with probability

S(x) = exp{–xµT}.

The fitness of the mutant is then

W(x,y,n) = S(x)R(e(x,y,n)).

I present results for the particular functions
given in Appendix 2, making no claim about the
generality of conclusions for other functions.
Figure 1 illustrates the feeding rates and the best
group and evolutionarily stable trait values in a
population at the equilibrium size n0 = 429.3.
When resident population members spend all

their time in habitat 1 the net energy intake rate
on habitat 2 is high (Fig. 1A). Consequently a
mutant individual only needs to spend a relative-
ly small proportion of its time on this risky
habitat to achieve a high total net energy gain
over the time interval, and its optimal proportion
of time on habitat 2 is only 0.244 (Fig. 1B). A
small increase in the proportion of time that
resident population members spend on habitat 2
produces a strong decrease in the net energy
intake rate on that habitat. Consequently a
mutant must now spend a greater proportion of
time on this risky habitat if it is to have a
reasonable total net energy gain over the time
interval, and its optimal proportion of time on
habitat 2 is increased. Finally, when residents

Fig. 1. Effect of the pro-
portion of population mem-
bers using habitat 2 on
the food supply and opti-
mal behaviour (Example
4). The population is at
its equilibrium size n0 =
429.3. — A: The net rate
of energy intake in the
two habitats. — B: The
optimal proportion of time
for a single mutant to spend
in habitat 2 (solid line).
The evolutionarily stable
proportion of time on hab-
itat 2, x*(n0) = x0, is that
proportion for the popula-
tion as a whole that is
also best for the mutant.
The best group propor-
tion xgroup is also shown.
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spend most of their time on habitat 2 the net rate
of energy gain is so low there that the mutant
does best to avoid this habitat altogether. The
evolutionarily stable proportion of time on
habitat 2 is that proportion for the resident
population that is also best for the mutant. This
proportion is illustrated in Fig. 1B and is x0 =
x*(n0) = 0.689.

Figure 1B also shows the best group propor-
tion of time on habitat 2, xgroup. As can be seen
this proportion is very much less than x0. If all
population members share the same trait value
then their fitness is maximised if this value is
xgroup. However a mutant in a population with
resident trait value of xgroup maximises fitness by
having a higher trait value (Fig. 1B). There

would then be selection pressure to increase the
trait value in the population. As the resident trait
value increased under this selection pressure the
best mutant trait value would also increase (Fig.
1B). There would therefore be selection pressure
for a further increase until the resident trait
value equalled x0.

As can be seen from Fig. 2 the best group trait
value is less then the evolutionarily stable value
at all population sizes, not just at size n0. The
figure also shows that the evolutionarily stable
trait value is increasing with population size at
size n0. It follows by criterion (10) that adaptive
change in trait value tends to destabilise popula-
tion dynamics. Figure 3 shows this directly. As
can be seen from the figure a population with

Fig. 2. Best group and
evolutionarily stable trait
values in Example 4.

Fig. 3. Population dynam-
ics in Example 4. The two
solid lines show the dy-
namics when the propor-
tion of time on habitat 2
is held fixed and when
the proportion of time on
habitat 2 changes adap-
tively with population size.
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fixed trait value of x0 has highly stable dynamics.
In contrast a population with flexible adaptive
behaviour has unstable population dynamics. If
the size of such a population were perturbed away
from n0 then population size would oscillate
about n0 with an amplitude that increased over
time.

Discussion

I have contrasted the stability of the population
dynamics for a given population under two
assumptions about the behavioural response to
change in population size. By the phrase ‘adap-
tive change in trait value tends to destabilise the
population dynamics’ I have meant that stability
under an adaptive response implies stability
under no response. Of course this does not mean
the dynamics under an adaptive response will
always be unstable, only that the region of
parameter space for which there is instability
under an adaptive response contains the region
of instability under no response.

In all the examples presented, adaptive
change in trait value tends to destabilise popula-
tion dynamics. When there are direct competi-
tive interactions between population members,
as in Examples 1 and 2, it is plausible that the
intensity of competition will increase as popula-
tion size increases and that the best group level
of competition is low or zero. If these two
properties hold, criterion (10) applies and be-
haviour tends to destabilise dynamics.

When competition for resources is indirect,
as in Example 4, the selfish behaviour of
individuals at high population density is likely
to decrease the fitness of all population mem-
bers. This ‘tragedy of the commons’ effect
makes it plausible that destabilisation might be
the norm here as well.

In this paper, I have taken as the baseline
behaviour the evolutionarily stable trait value at
the equilibrium population size. In contrast,
Houston and McNamara (1997) compare adap-
tive behaviour with a fixed rule of thumb. Their
results again suggest that adaptive behaviour

produces more unstable population dynamics.
Despite these examples, I am not claiming

that adaptive behaviour always destabilises pop-
ulation dynamics. More work needs to be done
analysing further specific cases. For instance, it
would be instructive to examine the role of
territorial behaviour on the stability of the
population dynamics. In addition more work is
needed to establish general results. My aim in
this paper has been to draw attention to an issue
rather than give a complete analysis of it.

When formulating a model care may be
needed in defining what is meant by ‘holding
behaviour fixed as population numbers change’.
The same behaviour can be produced by more
than one underlying rule. It is the rule that is the
trait that should be held fixed. To illustrate this,
consider Example 4. In analysing this example I
took the trait to be the proportion of time spent
on habitat 2. Thus it was assumed that the
underlying rule employed by an animal control-
led this proportion directly. As an alternative I
might have taken an animal’s trait to be a
specification of the total net energy gained over
the time interval. Under given feeding condi-
tions a target energy gain determines the propor-
tion of time on habitat 2. However, as popula-
tion size, and hence feeding conditions change
holding the target fixed is not equivalent to
holding the proportion fixed.
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Appendix 1

When does the evolutionarily stable trait value increase with population size?

I assume that the evolutionarily stable trait value in a population of size n satisfies Eqs. 11 and 12. I
also assume continuous stability and hence that

∂
∂ ∂

+ ∂
∂

<
2 2

2 0
W

x y
x n x n n

W

x
x n x n n( *( ), *( ), ) ( *( ), *( ), ) (A1.1)

(Eshel 1983, Taylor 1989). Using these equations, I investigate the dependence of x*(n) on n.
Differentiating Eq. 11 with respect to n gives
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where derivatives are evaluated at x = y = x*(n). Condition 13 then follows directly from Eqs. A1.1
and A1.2.
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Appendix 2

Functions and parameters for the habitat choice model

I assume that if ni animals are foraging in habitat i each has net energy intake rate

H n
a b n

ni i
i i i

i

( )
exp( )

= [ − − ] −
1

1

(cf. Brown 1997). Here the first term on the right-hand side represents gross intake rate. The term –1
corresponds to energy expenditure. Results presented in Figs. 1–3 are based on the parameter values
a1 = 200, b1 = 0.005, a2 = 400 and b2 = 0.02. I take an animal to start with energy reserves of 10 units.
Thus its reserves at the end of the time interval are e´= e + 10 where e is the total net energy gain
during the interval. If e´≤ 0 then the animal leaves 0 descendant next year, while if e´ > 0

R e
e

e
( )

.
( )

= ′
+ ′

2 4
10

descendants are left. Other parameters are µ = 0.0125 and T = 50.


