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The modern theoretical ecology has identified travelling waves as one of the
appealing features suggesting that spatially structured populations may be self-
organized. Using a set of population renewal models in one-dimensional space,
generating regular periodic fluctuations, we seek possibilities to identify travelling
waves superimposed on the local dynamics. The waves move at a known speed to one
direction. The speed of the waves and the local population dynamics may be
modulated by noise. Our study suggests that the indicators of travelling waves are,
first, the overall level of synchrony among the populations is low, second, the
frequency distribution of the synchrony measure is bimodal (i.e., it has low central
tendency); and third, there is either no or a weakly decreasing trend between the level
of synchrony and distance between the populations compared. These features are
most easily recovered by cyclic or quasi-periodic dynamics. Data has recently started
to accumulate to indicate that the theory-anticipated travelling waves are also found in
dynamics of natural populations.

Introduction

Theoretical ecology dealing with population dy-
namics is becoming increasingly interested in
studying spatio-temporal patterns of spatially
distributed sub-populations (Bascompte & Solé
1995, 1997, Tilman & Kareiva 1997). The cen-
tral issue in this approach is that the local

populations are coupled together with dispersing
individuals. This research has identified travel-
ling waves as one of the intriguing determinants
showing that spatially structured populations
tend to be self-organized (Hassel et al. 1991,
1994, Bascompte & Solé 1995, Perry 1995).
Spatial interactions in population dynamics —
through dispersal and/or external forcing —
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have been shown to create a rich variety of
spatial patterns changing in time in cellular
automata and coupled map lattice-structured
population models (Hassell et al. 1991, 1994,
Comins et al. 1992, Solé et al. 1992, Boerlijst et
al. 1993, Rohani & Miramontes 1995, Murray
1993, Solé & Valls 1991, just to mention a few
pioneering examples).

The eye-catching patterns generated by spa-
tially linked dynamics comprise a suite of spa-
tial and temporal patterns including, e.g., travel-
ling waves, spiral waves, standing waves, spiral
chaos, rings, patches and crystal lattices. How-
ever, these patterns have rarely been reported in
real data. Hence, predictions of the population
dynamic models are an important challenge for
empirical work on spatial scale of population
renewal (Rohani & Miramontes 1995, Bas-
compte & Solé 1995).

Let us emphasize here that we do not intend
to focus on the topic of ecological invasions
(e.g., Shigesada & Kawasagi 1997), where the
term “travelling wave” is used to refer to species
expanding their distribution to new, previously
unoccupied areas. Here good examples are the
expansion of the distribution area of muskrat
and American mink in Europe in the early 1900s
(Shigesada & Kawasagi 1997). Such a wave
could be rather referred to as “tsunami” for its
potentially devastating effect on the environ-
ment. For many authors cited above, travelling
wave or rather travelling waves, indicate tempo-
ral and spatial fluctuations of high and low
population density areas in an organized way.
One rarely observes population waves passing
by, even though they may be due to dispersing
individuals. Rather, population waves are gener-
ated as a consequence of common density-de-
pendent processes being locally in differing
phase. This may as well be due to spatial linkage
between the local units, biotic interactions, or
global and local noise affecting the sub-units
differently. It is very likely that all the compo-
nents mentioned are involved. Often it is as-
sumed in this context that the waves are moving
from one place to another. That is, they posses
certain features, such as speed and direction.

Not until very recently, have data become to
substantiate that travelling waves are not only a
privilege of theoreticians but are also found in

dynamical structures of natural populations. The
few first examples include vole dynamics in
Finland and France (Ranta & Kaitala 1997,
Kaitala & Ranta 1998) and in Scotland (Lambin
et al. 1998, Mackinnon et al. 2001). These data
and their analyses are the only research which
have explicitly addressed the presence of travel-
ling waves in data on real animal population
dynamics. However, there are good reasons to
propose that the classical Hudson Bay Compa-
ny’s fur return data on Canadian lynx and snow-
shoe hare indicate features that strongly suggest
the presence of travelling waves (Ranta et al.
1997a, 1997b, 1997c, 1998, 1999, Stenseth et al.
1999) as is perhaps also the case with some
grouse populations (Moss et al. 2000).

Self-organized structures in dynamics of spa-
tially coupled populations are usually deter-
mined on the basis of visual inspection, al-
though the need for new analytical and statisti-
cal approaches for distinguishing spatial order
from randomness has been recognized already
some time ago (Hassell et al. 1994). Thus, if the
spatial population dynamics show wave pat-
terns, identifiable to the human eye, then the
patterns are considered to be a product of self-
structuring process in action in the spatially set
population. Quantitative measures of identifying
travelling waves are still scanty (Ranta & Kaita-
la 1997, Kaitala & Ranta 1998, Lambin et al.
1998, Mackinnon et al. 2001).

This all prompts us to develop means to
uncover the conditions under which travelling
waves will be generated and especially when
they will become visible by using objective
analytical tools. Also, the questions of relevance
are how sophisticated tools should be used and
what kind of data one has to have in order to be
able to infer the impact of travelling waves
affecting dynamics of local populations. Admit-
ting the complexity of the problem, we have
made some simplifications. We shall delimit
ourselves to study the problem in three dimen-
sions: continuous population size at any given
discrete point of time in discrete one-dimension-
al space. That is, our sub-populations, obeying
known temporal dynamics, are all arranged on a
line. Of course, a spatial arrangement of popula-
tion sub-units like this is rather arbitrary and
may not find a perfect match in nature. Howev-
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er, seeking for statistics capable of detecting the
presence of travelling waves calls for simplify-
ing the setting where the population dynamics
and the travelling waves superimposed on the
local populations are known. One can conclude
that progress is made only if the tools used are
capable of objectively pointing out that the
observed spatial pattern calls for the presence of
travelling waves.

Population data and measures of
synchrony

Tools for detecting and identifying travelling
waves in population dynamics are badly needed.
In fact, this holds true for being objectively able
to identify any kind of moving regular pattern
that occur in space. From the onset it is obvious
that the population data needed to prove the
existence of the waves have features that are
rare for time series collected from nature. The
key features include that there is information for
a focal species on fluctuations of population
densities in geographically replicated locations
over a long enough time-span. This requirement
is rarely met in the tradition of ecological re-
search. Ecological time series when covering
long periods of time often originate from a
single site, or they are from several locations but
cover short time periods (Powell & Steele 1995).
In addition, ecological time series are not only
short but they are swamped with noise. With
long time series the sampling method will often
be changed over the time, not to belittle the
effect that the environment itself is likely to vary
over a long time-span.

To stress that we are on shaky ground when
looking after the signs of travelling waves, we
shall also point out in the very beginning of our
exploration the problem of scale. There is little
information of what is the correct geographical
scale for data on dynamics of populations to be
used in the hunt for travelling waves. It is
obvious that if the scale is too small, the wave
may remain undetected because all the local
time series are samples of the same stage of the
wave passing by. The other extreme is that the
sampling localities are so widely spaced out that
they miss most of the peaks of the waves. This

binds curiously together all the relevant compo-
nents involved in studying travelling waves:
length, speed and direction of the wave, and the
features of the underlying population dynamics.
We shall make here a clarification due to cyclic
population dynamics. The length of a wave
(measured from top to top in space) may be
regarded as a function of travelling speed and
period length (measured from top to top in time)
of the underlying dynamics.

In a most idealized case, data on noiseless
fluctuations of the focal species are long-term
observations from a dense enough geographical
grid. Unfortunately, such data do not exist!
Therefore, as a starting point, we limit ourselves
to simulated time series that will fulfil our three
criteria. For these data, we will compute simple
statistical measures, which we think are of rele-
vance when seeking for indications of presence
of travelling waves modulating local dynamics.

The first measure is cross correlation (e.g.,
Chatfield 1984), with time lag 0. This is a
standard tool to assess the level of synchrony in
dynamics between any pair of populations. Large
positive correlation coefficients indicate that the
populations are fluctuating in synchrony. Large
negative values indicate fluctuations of the two
populations to be out of phase. And cross corre-
lation close to zero suggests that the populations
do not have much in common in their temporal
variation.

As a measure of general level of synchrony,
cross correlation is somewhat problematic for
two reasons. Once the number of populations
compared exceeds two, the correlation coe-
fficients calculated in pairs between all n sub-
populations are not statistically independent. This
is, however, a minor issue if the cross correla-
tion coefficients are used as descriptive means
only, and no interference of statistical signifi-
cance is made. The problem of non-independ-
ence of data points can be overcome by re-
sampling techniques (Ranta et al. 1995b) or by
other special methods (Koenig 1999).

Our second measure is the central tendency
of the frequency distribution of synchrony meas-
ures (Ranta et al. 1999). To measure the central
tendency we aggregate the cross correlation
coefficients into 0.1 bins ranging from –1 to 1.
The bin containing the average of the frequency
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distribution of the synchrony measures is dis-
covered and the number of observations falling
into this bin and one bin on both sides is then
counted. The larger the proportion of all obser-
vations fall into these three bins, the higher the
central tendency is. A frequently neglected fea-
ture in synchronous dynamics of populations is
that the time-series may consist of two (or more)
sets composed of groups of populations being
internally in synchrony but the different sets
fluctuating out of phase. This would yield to a
bimodal frequency distribution of cross correla-
tion coefficients, one mode close to high posi-
tive values and the other one close to high
negative values, the average level of synchrony
falling close to zero. The central tendency would
then also be a low value indicating the bimodali-
ty. Of course, a uniform distribution of correla-
tion coefficients from –1 to 1 will have a mean
close to zero and a low central tendency. We are
aware of this, and have taken care to report
bimodal frequency distributions only.

The third measure we use here is the rela-
tionship between the level of synchrony and
distance among the population sites compared.
An empirical finding in many data sets on
population dynamics, but not in all, is that the
overall level of synchrony levels off with in-
creasing distance among the populations com-
pared (Ranta et al. 1995a, 1995b, 1997a–d,
1999). As these three measures, average syn-
chrony, central tendency of synchrony and dis-
tance-dependency of synchrony, are often used
to characterize synchronous dynamics of popu-
lations, we expect them to serve as tools in
identifying travelling waves superimposed on
local population dynamics.

Dynamics of populations with
travelling waves

To begin with, we assume that a total of n local
populations are located on a one-dimensional
vector. The spacing-out between the adjacent
cells in the string is one distance unit. Our
exploration of detecting the presence of travelling
wave superimposed on dynamics of local popula-
tions goes in three steps with increasing complex-
ity. The first one is the most naïve and the reason

for it being included is that we would like to be
assured of the capacity of simple tools in being
able to identify the presence of travelling waves.
To this end, we shall generate population dynam-
ics based on the sine function as follows:
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 refers to the size of the ith population
at time t + 1, while P is the period length of the
transformed sine function. The term m is the
speed of the travelling wave, always with the
speed 0 < m. The notation m  indicates that the
speed of the wave can also be from a stochastic
distribution with known characteristics. Thus,
the sine function generates cyclic dynamics with
precise periodicity against time, and the speed
of the travelling wave displaces the periodic
dynamics between the adjacent populations.
Note that m allows fractional, non-integer wave
speeds (see below). Finally, the error term e can
be used to introduce noise into the local dynam-
ics. Here the noise is drawn from normally
distributed random numbers with zero mean and
0.2 as variance, unless otherwise stated. Let us
emphasize that the population dynamics gener-
ated by Eq. 1 is not based on any biological
assumptions. It only attempts to mimic cyclic
dynamics with precisely known characteristics
when not disturbed too much with noise. The
usage of such naïve dynamics will find justifica-
tion below.

Next, we shall present a more realistic model
for the dynamics of local populations by making
use of the Ricker dynamics (Ricker 1954). The
Ricker dynamics has the following expression

Xt + 1 = Xtexp[r(1 – Xt/K)] + et,G (2)

where parameter r (here 1 £ r £ 4) is the growth
rate and K is the carrying capacity. If not other-
wise stated K = 100 for all sub-units. The range
of r used generates dynamics from stable to
chaotic fluctuations (May 1976). The additive
global noise et,G is drawn from random numbers
with normal distribution with 0 and 0.2 as mean
and variance.

To get travelling waves with Eq. 2, we first
generated 1000 time steps of data for each
parameter value, from these we selected a ran-
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dom starting point t so that 200 < t < 900. From
this point onwards we build up local population
dynamics for k = 100 time units so that we have
for the running index i as follows: t + i, t + k + i,
with ranging from 1 to n. Note that by doing so
with the Ricker dynamics we generate a wave
speed m = 1. On top of the dynamics generated
by Eq. 2, we added sub-population specific local
noise, et,L which was drawn from random num-
bers with the same parameters as et,G.

As the third step of our exploration we, for
obvious reasons (see Results), restricted our-
selves to the dynamics generated with Eq. 1. We
focused on uncovering the significance of noise
in wave speed and in the temporal dynamics to
the performance of the wave-detection tools. We
are also interested to see how the size of the data
set (number and length of the available time
series) may influence the detection of the travel-
ling wave.

Results

We first examine how the three measures of
synchronous dynamics behave when selecting
the parameters of Eqs. 1 and 2. To our mind,
there should be no doubt that a wave in popula-
tion dynamics travels throughout the n popula-
tions with a known speed and with limited noise
(Figs. 1 and 2). The speed of the wave in Eq. 1 is
m = 0.5, while the period of the generated
population dynamics was set to P = 10. This
makes a single wave take 20 distance units to
repeat itself in space. The speed of the wave in
the Ricker equation is m = 1.0, and with a two-
point periodicity (r = 2) the populations in the
spatial dimension are out of phase every second
distance unit. The progress of the wave in space
is clearly visible in the spatio-temporal graphs
(Fig. 1A and Fig. 2A). For both dynamics,
showing a clear pattern of a travelling wave, the

Fig. 1. Travelling wave and dynamics of cyclic populations. Equation 1 with P = 10, m = 0.5 is used to
generate the data. Panel A shows how the wave is expressed both in time (x-axis direction) and in space (y-
axis direction). The size of the dots indicates relative population size. Based on the selected parameter
values it takes 10 time units to accomplish a full cycle in time, while with the speed m = 0.5 it takes 20 spatial
units for the wave to repeat itself (the bottom row and the top row are matching; note that the wave is coming
from top to bottom). Panel B gives the level of synchrony in population fluctuations against distance between
the population pairs compared (the slight wobbling is due to the noise). The frequency distributions of all
pair-wise synchrony measures is given in panel C. Note that ca. 10% of observations are in the bin including
the average of the frequency distribution of the cross correlation coefficients. Thus the central tendency is
low and the bimodality is obvious.
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level of synchrony against distance echoes both
the speed of the wave and the period of the
dynamics (Fig. 1B and Fig 2B). However, there
is no clear correlation between the level of
synchrony and distance (Pearson r = –0.004, r =
0.017, panels B in Fig. 1 and Fig. 2, respective-
ly). Also, in both cases the average level of
synchrony is very low (–0.009 and –0.01), as is
also the central tendency, which is 10.1% in Fig.
1C and 0% in Fig. 2C.

In these two examples, by parameter choices
in Eqs. 1 and 2, the temporal dynamics has a
strong periodic component (10 year cycle, and
two-point cycle), and there should be no doubts
about the presence of the travelling wave in the
dynamics. It appears that all the three measures,
used when assessing the level of synchrony in
real data, have a bearing in finding the signature
of travelling wave in dynamics. We shall tenta-
tively suggest that with a travelling wave the
average of the cross correlations is close to zero,

the central tendency of synchrony is low or even
non-existent, and there is no distance-dependen-
cy in synchrony.

Our next exploration is in two parts. First,
we explored the Ricker dynamics over the full
range of the growth rate (1 £ r £ 3.5, m = 1). This
is to analyze the relationship between the known
dynamics (from stable to chaotic) and our poten-
tial wave indicators. Second, in Eq. 1 we varied
the speed of the travelling wave from 0.01 to
0.5. This was to score how the potential wave
indicators behave when the length of the travel-
ling wave varies. The results indicate that with
the Ricker dynamics the central tendency of
synchrony achieves low values only within the
range of r yielding periodic dynamics (Fig. 3).
However, with the wave speed m = 1 the other
two measures were invariably low through the
entire range of r explored.

On the other hand, with the clearly cyclic
dynamics all the three candidate measures for
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detecting signatures of extant travelling wave
indicated some diagnostic value. First, with a
slowly moving wave the average synchrony
level is high (Fig. 4A). There is a strong nega-
tive correlation between the level of synchrony
and the distance among the populations com-
pared (Fig. 4B). Furthermore, the central ten-
dency of synchrony is high, that is, most cross
correlation values are associated with the aver-
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Fig. 3. — A: Bifurcation diagram for the Ricker dy-
namics with r as the bifurcation parameter (K = 1).
Stable dynamic prevails till r = 2, with 2 < r < 2.6924
the dynamics is periodic, while r > 2.6924 yields
chaotic dynamic (May, 1976). — B: Central tenden-
cy (in percentage) of the frequency distribution of
the synchrony values calculated between all pairs of
populations. High values indicate that most values
are associated with the mean of the frequency distri-
bution of the cross correlation coefficients, whereas
low values suggest bimodality of the frequency dis-
tribution. The central tendency is low within the peri-
odic range of r (even with r close to 3.2, where there
is a periodic window within the chaotic region).

Fig. 4. The three synchrony measures and travelling
wave in cyclic dynamics with period length P = 10
graphed against the speed of the travelling wave.
When the speed is slow (i.e., there is a short dis-
tance between wave tops) synchrony is high (A),
and has a strong negative distance dependency (B)
and most cross correlations are close to the aver-
age cross correlation (C). However, when the wave
tops spread-out with increasing travel speed of the
wave, the average of the synchrony measured goes
down because the frequency distribution of the cross
correlation coefficients becomes increasingly bimo-
dal (and we also lose the distance-dependency of
the synchrony). This is because there begins to
emerge two (or more) sets of populations mutually
in synchrony, but the different sets being out of
phase in their fluctuations.
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age (high) level of synchrony (Fig. 4C). Howev-
er, when the travel speed of the wave increases
both the central tendency and the mean of the
cross correlation coefficients goes down, and the
distance-dependency of the synchrony disap-
pears (Fig. 4). We have explored the effect of
the wave speed on possibilities to find the travel-
ling wave with the cyclic dynamics using vari-
ous values of P (from 3 to 50) and the major
finding, as seen in Fig. 4, holds. That is, with a
long-enough period in dynamics and a slow
enough travelling speed of the wave, the three
indicators reveal the presence of the traveller.
Low central tendency, no distance-dependency
and low average synchrony are the signatures of
a wave that travels in the space.

One may justifiably ask why, with the Ricker
dynamics, the two measures, average synchrony
and distance-dependency of synchrony failed to
identify the travelling wave (Fig. 3). This be-

comes especially interesting when all the three
measures served well in identifying the presence
of the wave with the cyclic dynamics (Fig. 4).
To address this question we randomly selected
one time point and analyzed the power spectrum
over all sub-populations, thus covering 100 dis-
tance units. With the cyclic dynamics it become
apparent that if the wave travels with too slow a
speed (m = 0.05; Fig 5A) the distance between
the subsequent tops is so small that the wave
periodicity component is not visible. However,
with a sufficient travelling speed (m = 0.3; Fig
5A) there are no problems to identify the pres-
ence of the wave with the help of power spec-
trum analysis. In the Ricker dynamics (r = 2.5)
the spatial component of the travelling wave
(dominance of the 0.5 frequency in Fig. 5C) is
visible. In the temporal spectra both the 10 year
cycle (frequency 0.1) and the two-point cycle
(frequency 0.5) are clearly visible (Fig. 5B and
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Fig. 5. Spatial and temporal power spectra of the cyclic dynamics, Eq. 1, and the Ricker dynamics, Eq. 2, with
different parameter values. — A: Note that cyclic dynamics with wave speed m = 0.05 does not generate
travelling wave, whereas m = 0.3 generates a wave the frequency of which is visible in the spatial power
spectrum. — B: The ten-year periodicity (P = 10) is clearly visible in temporal spectra for both wave speeds
(compare with Fig. 4). The Ricker dynamics (explored with two r values) does generate recognizable peaks
with frequency 0.5 both in (C) the spatial and (D) temporal dynamics. However, with r = 2.8 (close to complex
dynamics) the component of the 2 year periodicity is not that clear anymore (compare this with Fig. 3).
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D). We conclude that the failure of the average
synchrony and the distance to recognize the
wave is due to the high speed (m = 1) relative to
the two-point cycle created with the r-values
from 2 to 2.8 (Fig. 3).

The often unavoidable fact with biological
time series is that they are short and topped off
with noise and often there are not that many
available. We shall next turn to these issues. We
shall assume that the characteristics of the popu-
lation dynamics are retained after Eq. 1. We
now set P = 6 making it possible to achieve
three population peaks (with matching number
of lows) in 20 years of time. The speed of the
wave is m = 0.3. For brevity, we shall vary only
three variables. The number of populations is
either n = 10 or n = 50, while the variance
modulating the wave speed m is drawn from
random numbers from normal distribution with
m = 0.3 as mean and the variance taking values
from 0.01 to 1. Similarly, et is a random number
with zero mean while the variance ranges sys-
tematically from 0.01 to 1. We repeated the
simulations 100 times for each parameter com-
bination and will report the averages below.

The results are clear-cut. As expected, with
limited data set (n = 10) the chances to locate a

travelling wave are non-existent (Fig. 6A–C).
However, with increasing number of popula-
tions included there are no problems in finding
the signature of the travelling wave (area below
the 10% isocline in Fig. 6F). Surprisingly enough,
noise variance in wave length is of much lesser
importance than noise in the dynamics (isoclines
in Fig. 6F are almost parallel to the x-axis). We
experimented also by increasing the time span to
cover 100 generations but kept n = 10. As
expected, the outcome is more sensitive to the
number of populations examined than to the
period covered. Of course, the time span has to
be reasonable. With n = 50 but only ten genera-
tions of data, the isoclines move slightly up-
wards, without indicating any qualitative change
in the results.

Concluding remarks

The current literature on population dynamics
indicates an increasing interest in spatial pat-
terns of population dynamics. With good reason
we may ask whether there exist patterns in the
spatial population dynamics that are essential
for population ecology but are not visible in the

Fig. 6. Isoclines for average synchrony (A, D), distance dependency of synchrony (B, E) and central
tendency of synchrony (C, F) in a noisy world with scanty data. The noise is both in the wave speed and in
the process generating the cyclic dynamics. The top-row panes are for ten populations over 20 years, while
the number of populations is 50 in the bottom row (note that in panel E the distance dependency of
synchrony was zero for the entire range of the two noises explored).
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potentially rich dynamics of single populations
or in aggregated data. Further, if such patterns
exist, can we detect spatial order from random-
ness by using analytical and statistical tools,
instead of just relying on visual inspection? One
possible spatial pattern is travelling wave, which
also represents one form of self-organization in
population dynamics (Ranta & Kaitala 1997,
Kaitala & Ranta 1998).

We have made in this paper an attempt to
develop means to uncover travelling waves data
by using a set of objective analytical tools.
These tools are average synchrony, central ten-
dency of synchrony and distance-dependency of
synchrony. We have argued that travelling waves
are characterized by the following measures: the
mean value of the cross correlation is close to
zero, the central tendency of synchrony is low,
and there is no distance-dependency in synchro-
ny. It should be noted that as a tool these three
measures should be considered as an entity —
none of them alone is a strong enough evidence
of the presence of travelling wave in the popula-
tion dynamics.

In addition to the dynamics reported in this
paper we also experimented with the second
order autoregressive (AR2) model with all pos-
sible parameter values. We found the travelling
waves every time when the model produced
cyclic, periodic, or disturbed damped dynamics.
As a whole, a travelling wave in order to be
detectable, both visually and using our approach,
needs to contain a clear periodical component in
the dynamics.

Let us take as an example a spatial setting of
random numbers spread over a space. Certainly,
we cannot expect to detect any spatial order in
this setting. However, the expected value of the
cross correlation, averaged over the space, is
zero, and there should be no distance-dependen-
cy observable in the synchrony. Nevertheless,
the central tendency is very high, indicating that
the synchrony distribution is concentrated around
zero. Thus, it is the central tendency that makes
the difference between a spatial wave and ran-
dom order.

Our conclusions are valid only if the scale of
the data is large enough. For too small a scale
the mean value of the cross correlation may
become positive, and the synchrony may begin

to show distance-dependency. However, there is
no basis for concluding that if we observe
positive average synchrony and distance de-
pendency we are dealing with a part of travel-
ling wave.

Acknowledgements

Many thanks are due to Esa Ranta for his continuous
interest in the topic.

References

Bascompte, J. & Solé, R. V. 1995: Rethinking complexi-
ty: modelling spatiotemporal dynamics in ecology.
— Trends Ecol. Evol. 10: 361–366.

Bascompte, J. & Solé, R. V. 1997: Population cycles and
spatial patterns in snowshoe hares: an individual
oriented simulation. — J. theor. Biol. 187: 213–222.

Boerlijst, M. C., Lamers, M. E. & Hogeweg, P. 1993:
Evolutionary consequences of spiral waves in a host-
parasitoid system. — Proc. Roy. Soc. Lond. B 253:
15–18.

Chatfield, C. 1984: The analysis of time series: An
introduction. — Chapman & Hall, New York.

Comins, H. N., Hassell, M. P. & May, R. M. 1992: The
spatial dynamics of host-parasitoid system. — J.
Anim. Ecol. 61: 735–748.

Hassell, M. P., Comins, H. N. & May, R. M. 1991:
Spatial structure and chaos in insect population dy-
namics. — Nature 353: 255–258.

Hassell, M. P., Comins, H. N. & May, R. M. 1994:
Species coexistence and self-organizing spatial dy-
namics. — Nature 370: 290–292.

Kaitala, V. & Ranta, E. 1998: Travelling wave dynamics
and self-organization in a spatio-temporally struc-
tured population. — Ecol. lett. 1: 186–192.

Koenig, W. D. 1999: Spatial autocorrelation of ecologi-
cal phenomena. — Trends Ecol. Evol. 14: 22–26.

Lambin, X., Elston, D. A., Petty, S. J. & MacKinnon, J.
L. 1998: Spatial asynchrony and periodic travelling
waves in cyclic populations of field voles. — Proc.
Roy. Soc. Lond. B 265: 1491–1496.

Mackinnon, J. L., Petty, S. J., Elston, D. A., Thomas, C.
J., Sherrat, T. N. & Lambin, N. 2001: Scale invariant
spatio-temporal patterns of field vole density. — J.
Anim. Ecol. 70: 101–111.

May, R. M. 1976: Simple mathematical models with very
complicated dynamics. — Nature 261: 459–467.

Moss, R., Elston, D. A. & Watson, A. 2000: Spatial
asynchrony and demographic traveling waves during
Red Grouse population cycles. — Ecology 81: 981–
989.

Murray, J. D. 1993: Mathematical biology, 2nd edition.



ANN. ZOOL. FENNICI Vol. 39 • Travelling waves in population dynamics 171

— Springer-Verlag, Heidelberg.
Perry, D. A. 1995: Self-organizing systems across scales.

— Trends Ecol. Evol. 10: 241–244.
Powell, T. M. & Steele, J. H. (eds.) 1995: Ecological time

series. — Chapman & Hall, New York.
Ranta, E. & Kaitala, V. 1997: Travelling waves in vole

population dynamics. — Nature 390: 456.
Ranta,E., Kaitala, V. & Lindström, J. 1997a: External

disturbances and population dynamics. — Ann. Zool.
Fennici 34: 127–132.

Ranta, E., Kaitala, V. & Lindström, J. 1997b: Dynamics
of Canadian lynx populations in space and time. —
Ecography 20: 425–431.

Ranta, E., Kaitala, V. & Lindström, J. 1998: Spatial
dynamics of populations. — In: Bascompte, J. &
Solé, R. V. (eds.), Modelling spatiotemporal dynam-
ics in ecology: 47–62. Springer Verlag, Berlin Hei-
delberg.

Ranta, E., Kaitala, V. & Lindström, J. 1999: Spatially
autocorrelated disturbances and patterns in popula-
tion synchrony. — Proc. Roy. Soc. Lond. 266: 1851–
1856.

Ranta, E., Kaitala, V. & Lundberg, P. 1997c: Population
variability in space and time: the dynamics of syn-
chronous population fluctuations. — Science 278:
1621–1623.

Ranta, E., Lindström, J. & Lindén, H. 1995a: Synchrony
in tetraonid population dynamics. — J. Anim. Ecol.
64: 767–776.

Ranta, E., Kaitala, V., Lindström, J. & Helle, E. 1997d:
Moran effect and synchrony in population dynamics.
— Oikos 78: 136–142.

Ranta, E., Kaitala, V., Lindström, J. & Lindén, H. 1995b:
Synchrony in population dynamics. — Proc. Roy.
Soc. Lond. B 262: 113–118.

Ranta, E., Lindström, J., Kaitala, V., Kokko, H., Lindén,
H. & Helle, E. 1997e: Solar activity and hare dynam-
ics — a cross-continental comparison. — Am. Nat.
149: 765–775.

Ricker, W.E. 1954: Stock and recruitment. — J. Fish.
Res. Bd. Can. 11: 559–623.

Rohani, P. & Miramontes, O. 1995: Host-parasitoid meta-
populations: the consequences of parasitoid aggrega-
tion on spatial dynamics and searching efficiency. —
Proc. Roy. Soc. Lond. B 260, 335–342.

Shigesada, N. & Kawasaki, K. 1997: Biological Inva-
sions: theory and practice. — Oxford University
Press, New York.

Solé, R.V., & Valls, J. 1991: Order and chaos in a 2D
Lotka-Volterra coupled map lattice. — Phys. lett. A
153: 330–336.

Solé, R.V., Valls, J. & Bascompte, J. 1992: Spiral waves,
chaos and multiple attractors in lattice models of
interacting populations. — Phys. lett. A 166: 123–128.

Stenseth, N. C., Chan, K.-S., Tong, H., Boonstra, R.,
Boutin, S., Krebs, C. J., Post, E., O’Donoghue, M.,
Yoccoz, N. G., Forchhammer, M. C. & Hurrell, J. W.
1999: Common dynamic structure of Canada lynx
populations within three climatic regions. — Science
285: 1071–1073.

Tilman, D. & Kareiva, P. (eds.) 1997: Spatial ecology:
The role of space in population dynamics and inter-
specific interactions. — Princeton University Press,
Princeton.


