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The term extinction threshold refers to a critical value of some attribute, such as the 
amount of habitat in the landscape, below which a population, a metapopulation, or a 
species does not persist. In this paper we discuss the existence and behavior of extinc-
tion thresholds in the context of metapopulation models. We review and extend recent 
developments in the theory and application of patch occupancy models, which have 
been developed for assessing the dynamics of species inhabiting highly fragmented 
landscapes. We discuss the relationship between deterministic and stochastic models, 
the possibility of alternative equilibria, transient dynamics following perturbations 
from the equilibrium state, and the effect of spatially correlated and temporally varying 
environmental conditions. We illustrate the theory with an empirical example based on 
the Glanville fritillary butterfl y (Melitaea cinxia) metapopulation in the Åland Islands 
in southwest Finland.

Introduction

Habitat loss and habitat fragmentation have been 
widely recognized as the main threats for the 
survival of species both locally and worldwide 
(Barbault & Sastrapradja 1995). However, con-
vincing empirical studies demonstrating extinc-
tions due to habitat loss and fragmentation are 
scarce (Andrén 1994, 1996), mainly due to the 
long time scales and large spatial scales that 
would be involved in conducting such studies. 
Experimentalists have overcome the problem 
by demonstrating the effects of habitat loss 
and fragmentation on extinction in microbial 
(Burkey 1997, Debinski & Holt 2000) and other 
small-scale model systems (Gonzales et al. 1998, 
Gonzales & Chaneton 2002). To assess the long-
term and large-scale consequences of habitat loss 
and fragmentation for the vast majority of spe-

cies for which there will never be enough data 
for a rigorous empirical analysis, a robust and 
general theoretical framework is needed.

Human-caused habitat loss and fragmentation 
transform more continuously varying landscapes 
to networks of discrete habitat fragments. Meta-
population theory, with its focus on the dynamics 
and persistence of assemblages of local popula-
tions inhabiting such fragmented landscapes, 
has gained much attention as a potential tool for 
assessing the ongoing biodiversity crisis. Meta-
population theory may be used both to provide 
general insights into how species respond to habi-
tat fragmentation (e.g. Levins 1969, Gyllenberg 
et al. 1997, Ovaskainen & Hanski 2001, Ovaskai-
nen et al. 2002) and as a part of spatially extended 
population viability analyses (e.g. Lindenmayer 
& Possingham 1996, Gaona et al. 1998, Hanski 
1999, Sjögren-Gulve & Hanski 2000).
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The fundamental prediction made by most 
metapopulation models is that a metapopulation 
will go deterministically extinct when the amount 
of habitat left in a fragmented landscape is below 
a critical level. This was the key conclusion of 
Levins (1969, 1970), who formulated the fi rst 
and most widely used metapopulation model. 
As Levins formulated his model as a patch occu-
pancy (presence-absence) model for a network of 
infi nitely many identical and equally connected 
habitat patches, the main contribution of his 
model was to provide qualitative insight to meta-
population dynamics, though subsequently some 
empirical applications have been based on the 
original Levins model (Lande 1987, Doncaster & 
Gustafsson 1999, Carlson 2000). Over the years, 
the Levins model has been extended in various 
directions to incorporate more biological realism. 
First, models structured by the size of local popu-
lations (Hastings & Wolin 1989, Hanski 1985, 
Hastings 1991, Gyllenberg & Hanski 1992, Gyl-
lenberg et al. 1997, Casagrandi & Gatto 1999, 
2002) have relaxed the simple presence-absence 
description of local populations by including 
mechanistic submodels for the dynamics of local 
populations. Second, stochastic models assum-
ing fi nite networks of habitat patches (Nisbet 
& Gurney 1982, Andersson & Djehiche 1998, 
Lande et al. 1998, Hernández-Suárez et al. 1999, 
Ovaskainen 2001, Alonso & McKane 2002) 
have shifted the emphasis from deterministic 
extinction thresholds to the distribution of the 
time to extinction due to extinction-colonization 
stochasticity. Third, spatially realistic models 
(Moilanen et al. 1998, Hanski 1999, Hanski 
& Ovaskainen 2000, Ovaskainen 2002a) have 
extended the Levins model to heterogeneous 
networks in which the habitat patches may differ 
from each other e.g. in terms of their size, quality 
and connectivity to the remaining network.

In this paper we review the literature on 
extinction thresholds in metapopulation dynam-
ics and present some extensions to the current 
theory. We will restrict our discussion to patch 
occupancy models, which ignore the dynamics 
and structure of local populations. While this 
simplifi cation restricts the range of situations to 
which the theory can be applied, it makes the 
models both tractable for rigorous mathemati-
cal analysis (Ovaskainen & Hanski 2001, 2002, 

Ovaskainen 2001, 2003) and turns them to effec-
tive tools that are increasingly used in empirical 
studies (Moilanen 1999, 2000, Hanski 1999, 
Hanski & Ovaskainen 2000, ter Braak & Etienne 
2003). We start with theory based on determinis-
tic models, which are most appropriate for rela-
tively large patch networks. After describing the 
basic threshold conditions, we extend the discus-
sion to patch values (the contributions that the 
individual habitat fragments make to the dynam-
ics and persistence of the metapopulation), to 
models that possess alternative equilibria, and to 
the connections between metapopulation theory 
and the theory of infectious diseases. Next, we 
turn to stochastic models, which are needed to 
estimate the time that a metapopulation living in 
a fi nite patch network is expected to persist. We 
show how correlated local dynamics increase the 
extinction risk and discuss transient dynamics 
following a perturbation. Finally, we illustrate 
both the deterministic and the stochastic theories 
by analyzing the extinction threshold of a large 
metapopulation of the Glanville fritillary butter-
fl y in a highly fragmented landscape.

Extinction in deterministic 
metapopulation models

The Levins model and its spatial 
extensions

The classic model of metapopulation dynamics 
was formulated by Levins (1969, 1970), who 
used the logistic model to analyse patch occu-
pancy dynamics in an infi nitely large network of 
identical habitat patches. Lande (1987) extended 
Levinsʼs model by assuming that only fraction h 
of the patches is suitable for occupancy, though 
migrating individuals still continue to arrive also 
at the unsuitable patches. Habitat loss is thus rep-
resented by 1 – h in Landeʼs model, and the rate 
of change in the fraction of occupied patches p 
(out of suitable patches) is given by

                    dp/dt = chp(1 – p) – ep,               (1)

where e and c are the extinction and colonization 
rate parameters. In this model the equilibrium 
value for the fraction of occupied patches is
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                             p* = 1 – d/h,                       (2)

where d = e/c. Thus, the species will persist, in 
the sense that there is a non-trivial equilibrium 
state p* > 0, only if 

                                   h > d.                             (3)

In Eq. 3, h represents the amount of habitat, 
and is thus a property of the landscape, whereas 
d is a species parameter, measuring how good 
the species is in colonizing empty patches and 
in persisting in the occupied patches. The funda-
mental message from Eq. 3 is that if the amount 
of habitat h is reduced below the threshold value 
d, the metapopulation goes extinct even though 
there still is suitable habitat for occupancy.

The models of Levins and Lande and their 
multi-species extensions have been widely 
applied in theoretical studies (Levins & Culver 
1971, Slatkin 1974, Levitt 1978, Hanski 1983, 
Nee & May 1992, Tilman et al. 1994, Hanski 
et al. 1996, Lei & Hanski 1997, Etienne 2000, 
Ovaskainen 2001, Ovaskainen & Hanski 2002), 
but their applicability to real metapopulations 
has remained questionable because of the bla-
tantly unrealistic assumptions made by the 
models (Harrison 1991, 1994). Most impor-
tantly, real landscapes do not consist of an infi -
nite number of identical and equally connected 
patches, but habitat patch networks are typically 
highly heterogeneous. As an attempt to over-
come this limitation of the original model, we 
(Hanski & Ovaskainen 2000, Ovaskainen 2002a, 
2002b, 2003, Ovaskainen & Hanski 2001, 2002, 
2004, Ovaskainen et al. 2002) have extended the 
Levins model to a model termed the spatially 
realistic Levins model (SRLM), which does 
not model just the overall fraction of occupied 
patches but also the probabilities that the indi-
vidual patches are occupied. Letting  
denote the vector with the element p

i
 giving the 

probability that patch i is occupied, the SRLM 
is defi ned by (Hanski & Ovaskainen 2000, 
Ovaskainen & Hanski 2001)

                 dp
i
 /dt = C

i
(p)(1 – p

i
) – E

i
 p

i
,           (4)

where C
i
(p) is the colonization rate of patch i 

when the patch is empty, and E
i
 is the extinction 

rate of the local population in patch i when the 
patch is occupied.

The spatially realistic model applies to het-
erogeneous patch networks, where the patch-
specifi c colonization and extinction rates are 
assumed to depend on the spatial confi guration of 
the network. The theory applies to a large family 
of functional forms of the colonization and 
extinction rates (Ovaskainen & Hanski 2001), 
but here we restrict the analysis, for the sake of 
illustration, to simple but biologically justifi ed 
forms that have been used before (Ovaskainen 
2002a, 2002b, Ovaskainen & Hanski 2004). We 
assume that the extinction rate E

i
 is given as 

, where e is a species-specifi c extinc-
tion rate parameter, A

i
 is the area of patch i, and 

z
ex

 describes how patch area affects the risk of 
extinction. The reasoning behind this formula is 
that the expected population size increases with 
patch area, and the risk of extinction generally 
decreases with increasing population size. The 
colonization rate C

i
 of an empty patch i is given 

as C
i
(p) = S

j≠i
c

ij
 p

j
 , where c

ij
 is the contribution 

that an occupied patch j makes to the coloniza-
tion rate of the empty patch i. We assume that 

, where c is a colonization 
rate parameter, and z

im
 ≥ 0 and z

em
 ≥ 0 describe 

how patch area affects immigration and emigra-
tion, respectively. The function f describes the 
dispersal kernel, i.e., the effect of the interpatch 
distance d

ij
 on migration success. We will use the 

exponential dispersal kernel , where 
a is a parameter determining the scale of disper-
sal distances. The reasoning behind the assump-
tions made about the colonization rate is that only 
occupied patches may contribute to the coloniza-
tion of an empty patch, that large patches are 
expected to send out more emigrants than small 
patches, that large empty patches are expected to 
attract more immigrants, and that dispersal suc-
cess decreases with increasing distance.

The fundamental prediction made by the 
model (4) is that the species will persist in the 
long-term if and only if the condition

l
M
 > d                            (5)

is met. In Eq. 5, d = e/c is a species param-
eter as in Eq. 3, and l

M
 is a quantity called the 

meta population capacity of the fragmented 
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landscape (Hanski & Ovaskainen 2000). The 
metapopulation capacity is given as the leading 
eigenvalue of matrix M, the elements of which 
are defi ned by m

ii
 = 0 and  

for j ≠ i. Here the factor  is proportional to the 
expected lifetime of the local population in patch 
i, and  is proportional to the rate at 
which immigrants originating from patch j suc-
ceed in colonizing patch i.

Comparison with Eq. 3 suggests that l
M
 

is analogous to the amount of habitat h in the 
non-spatial model, but in addition l

M
 takes into 

account the effect of the spatial confi guration 
of the habitat on metapopulation persistence. 
A further analogy is given by the fact that an 
appropriately weighted (see below) average of 
the equilibrium fraction of occupied patches p

l
 is 

given by an equation that is analogous to Eq. 2,

                           p
l
* = 1 – d/l

M
.                      (6)

The spatially realistic model has been applied 
to the study of two species, the Glanville fritillary 
butterfl y (Hanski & Ovaskainen 2000, Ovaskai-
nen 2002a, Ovaskainen & Hanski 2004) and the 
three-toed woodpecker (Pakkala et al. 2002). In 
both cases, the metapopulation capacity success-
fully ranked multiple networks of habitat patches 
in terms of the occurrence of the species (Fig. 1). 
In the case of the butterfl y, many networks were 
below the apparent deterministic extinction 
threshold, providing convincing empirical evi-
dence for the extinction threshold.

Patch values

While the threshold condition (Eq. 5) character-
izes the viability of an entire metapopulation, 
one might also like to consider more localized 
measures to assess the contributions that indi-
vidual habitat fragments make to metapopulation 
dynamics and persistence. For example, in the 
management of natural metapopulations inhabit-
ing fragmented landscapes, metapopulation via-
bility analysis has been used as a tool to choose 
those fragments that should be conserved to 
maximize the conservation benefi ts from a lim-
ited amount of resources (Lindenmayer & Pos-
singham 1996, Keitt et al. 1997, Verboom et al. 
2001, Moilanen & Cabeza 2002). Patch values 
in the sense of the contributions that individual 
patches make to the dynamics and persistence of 
the metapopulation have most often been derived 
by simulating alternative scenarios with a metap-
opulation model that has been parameterized for 
the focal species (e.g. Hanski 1994: fi g. 3).

As an alternative for the simulation-based 
approach, we have developed mathematical 
theory aimed at enhancing the general under-
standing of patch values in the context of patch 
occupancy models (Hanski & Ovaskainen 2000, 
Ovaskainen & Hanski 2001, Ovaskainen 2003). 
As “patch value” and “the contribution that 
a patch makes to metapopulation dynamics” 
are ambiguous terms, it is important to make 
it explicit exactly how one wishes to assess 
the value of a patch. We (O. Ovaskainen & I. 
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Fig. 1. Empirical evidence for the extinction threshold. Each dot corresponds to a network of habitat patches. The 
horizontal axis gives the metapopulation capacity lM of the patch network, whereas the vertical axis shows an 
appropriately weighted fraction of occupied patches as derived from presence-absence data. (A) The Glanville fritil-
lary butterfl y (from Hanski & Ovaskainen 2000), (B) the three-toed woodpecker (from Pakkala et al. 2002).
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Hanski unpubl.) have suggested four biologi-
cally relevant defi nitions for patch value. First, 
patch value V

i
 denotes the contribution that patch 

i makes to the metapopulation capacity of the 
landscape, defi ned as the reduction in l

M
 fol-

lowing the destruction or deterioration of patch 
i. Second, we denote by U

i
 the contribution of 

patch i to the size of the metapopulation, meas-
ured as the decrease in the fraction of occupied 
patches (possibly weighted by patch area or other 
such attribute) following the destruction or dete-
rioration of patch i. Third, t

i
 denotes the contri-

bution of patch i to metapopulation persistence, 
measured as the decrease in the mean time to 
metapopulation extinction following the destruc-
tion or deterioration of patch i. And fourth, we 
denote by W

i
 the long-term contribution of patch 

i to colonization events in a patch network. Patch 
values turn out to be given by eigenvectors of 
appropriate matrices (Ovaskainen & Hanski 
2001, Ovaskainen 2003). For example, the meta-
population dynamic measure  is given 
as the left leading eigenvector of matrix B, the 
elements of which are defi ned as

                                                 (7)

Here b
ij
 measures the direct contribution that 

patch j makes to the colonization rate of patch i, 
while the left leading eigenvector W accounts for 
the chain of colonizations through time and thus 
measures the long-term contribution of patch j to 
the colonization events in the entire network (O. 
Ovaskainen & I. Hanski unpubl.). In addition to 
being helpful for applications, patch values also 
facilitate the construction of metapopulation 
theory by allowing a compact description of the 
size of a metapopulation in a heterogeneous net-
work with a single number, p

l
. This can be done 

by defi ning p
l
 as the weighted fraction of occu-

pied patches, p
l
 = S

i
W

i
 p

i
, where the weights are 

the patch values W
i
.

Alternative equilibria

The Levins model is structurally simple, as it 
assumes that the extinction rate of an occupied 
patch is independent of and the colonization rate 
of an empty patch depends linearly on the state 

of the remaining metapopulation. There are two 
main reasons why this might not be the case in 
many real metapopulations. First, the rescue 
effect may decrease the rate at which local popu-
lations go extinct, as immigrants may supplement 
a local population and thus decrease the local 
extinction risk (Brown & Kodric-Brown 1977). 
Second, if local dynamics involve an Allee effect 
(Allee et al. 1949) the colonization rate of an 
empty patch may be especially low when the 
occupancy state of the remaining metapopula-
tion is low leading to low rate of immigration. 
This may happen e.g. in such sexually reproduc-
ing species in which the number of immigrants 
arriving at a patch has to exceed a threshold level 
before successful colonization is likely. Both the 
rescue effect and the Allee effect have been mod-
elled mechanistically in metapopulation models 
that are structured by local population size (Gyl-
lenberg et al. 1997, Etienne 2000).

We will illustrate these concepts here by 
modifying the structure of the Levins model as 
follows. First, we model the rescue effect by 
assuming that the extinction rate e of an occu-
pied patch is reduced to . Second, we 
model the Allee effect by assuming that the colo-
nization rate cp of an empty patch is reduced to 
cp2. These functional forms are somewhat arbi-
trary, and they have been chosen mainly to illus-
trate the possible qualitative consequences that 
such structural modifi cations of the Levins model 
may lead to. The model with a rescue effect 
(model B in Fig. 2) predicts a higher equilibrium 
state for given parameter values than the basic 
Levins model (model A). This is to be expected, 
as the rescue effect decreases the extinction rate 
of local populations. Likewise, the model with 
an Allee effect (model C in Fig. 2) predicts a 
lower occupancy state than the basic Levins 
model, as the Allee effect decreases the coloni-
zation rate of empty patches. Both modifi cations 
lead to alternative equilibria, as illustrated by the 
unstable equilibria depicted by dashed lines in 
Fig. 2. The unstable equilibria act as watersheds; 
if the initial state of the metapopulation is above 
the unstable equilibrium, the metapopulation will 
converge upwards to the stable equilibrium p*, 
whereas in the opposite case it will converge to 
metapopulation extinction (p* = 0). In model C, 
alternative equilibria are present for all values of 
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the parameter c, whereas in model B the unstable 
equilibrium disappears for c > 1. In the terminol-
ogy of Ovaskainen and Hanski (2001), models B 
and C possess a weak and a strong Allee effect at 
the metapopulation level, respectively. Although 
empirical demonstration of alternative equilibria 
remains a challenge (though see Hanski et al. 
1995), the theoretical analyses (Gyllenberg et 
al. 1997, Ovaskainen & Hanski 2001) suffi ce to 
make a point of general importance. The mes-
sage is that even a large metapopulation with 
a relatively high level of patch occupancy may 
have a substantial risk of extinction. If popula-
tion dynamics include non-linearities such as the 
ones considered above, a perturbation e.g. in the 
form of an exceptionally unfavourable year may 
drive the metapopulation below the unstable 
equilibrium, after which the metapopulation has 
a deterministic tendency to go exinct.

Threshold conditions for disease 
eradication

Epidemiological models describing the dynam-
ics of a disease in a host population are closely 
analogous to metapopulation models (Grenfell 
& Harwood 1997). In a basic epidemiological 
model, a group of host individuals corresponds 
to a habitat patch network, disease transmission 
corresponds to colonization of empty patches, 

and the recovery of an individual corresponds to 
the extinction of a local population (alternatively 
one may consider a host population correspond-
ing to a patch, in which case a clustered set of 
such populations comprises a patch network). 
While metapopulation models have been used 
to elucidate the conditions that would ensure the 
long-term persistence of a species, epidemiologi-
cal theory has been employed to fi nd out condi-
tions under which the disease incidence would 
drop below the eradication threshold. In epide-
miology, the analogy for habitat loss is reduction 
in the number of susceptibles, which is typically 
achieved through vaccination or other such inter-
vention measures. The eradication threshold is 
generally written as

                                  R
0
 < 1,                            (8)

where R
0
 is the basic reproductive rate of an 

infection, defi ned as the average number of 
secondary cases produced by one primary case 
in an entirely susceptible population. The sim-
plest epidemiological model, the homogeneous 
SIS-model (susceptible-infected-susceptible), is 
exactly analogous to Landeʼs metapopulation 
model, the variable 1 – h now denoting the frac-
tion of immunized individuals.

In analogy with most landscapes being 
highly heterogeneous, host individuals typically 
differ greatly in their number of contacts with 
other hosts as well as in their susceptibility and 
infectiousness. Host heterogeneity may be due 
to age-dependent, genetic, spatial, behavioral 
or other such factors. Including this heteroge-
neity into epidemiological models has received 
much attention (Anderson & May 1991, Brun-
ham 1997, Thomas & Smith 2000, Anderson & 
Garnett 2000, Diekmann & Heesterbeek 2000). 
The main result is familiar from metapopulation 
theory, namely that the threshold condition R

0
 

< 1 is still valid, provided that the defi nition of 
the basic reproductive rate R

0
 is appropriately 

extended to the heterogeneous case. Typically, R
0
 

is given as the leading eigenvalue of an appropri-
ate matrix or operator (Anderson & May 1991, 
Diekmann & Heesterbeek 2000). Comparing 
Eqs. 5 and 8, we observe that the basic reproduc-
tive rate is given as R

0
 = l

M
 /d in metapopulation 

theory. While l
M
 /d in the metapopulation theory 
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Fig. 2. Alternative equilibria due to structural modifi -
cations of the Levins model. Continuous lines depict 
stable equilibria and dashed lines unstable equilibria. 
The letters A, B and C stand for the basic Levins model, 
the Levins model with a rescue effect and the Levins 
model with an Allee effect. The dots show bifurcation 
points. Parameter e = 1.
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increases with the number of habitat patches and 
with the colonization ability of the species, the 
value of R

0
 in the epidemiological theory grows 

with increasing number of contacts between the 
individuals and with increasing level of infec-
tiousness and susceptibility.

The development of effective intervention 
methods is a major goal for epidemiological 
theory. Analogously with metapopulation man-
agement, where patch values have been used to 
seek for cost-effective conservation measures, 
epidemiological research aims at determining 
those individuals who should be targeted for 
e.g. vaccination to make intervention as effec-
tive as possible (Anderson & May 1985, 1991, 
Diekmann & Heesterbeek 2000). Ovaskainen 
& Grenfell (2003) used the analogy between 
the heterogeneous SIS model and the spatially 
realistic Levins model combined with the theory 
of patch values to assess the contributions that 
different social groups make to the spread and 
persistence of sexually transmitted diseases.

Extinction in stochastic 
metapopulation models

The models of Levins and Lande predict that a 
metapopulation will go extinct only if the thresh-
old condition h > d is not met. These models are 
based on the assumption that there are infi nitely 
many patches, and the models thus ignore sto-
chastic fl uctuations in patch occupancy. If the 
number of patches is small, the relative effect of 
such fl uctuations may be large, and thus a small 
metapopulation may be vulnerable to extinction 
even if the deterministic threshold condition is 
met.

To examine the effect of stochasticity, we 
consider the stochastic logistic model, which is 
the stochastic analogue of the Levins model, and 
assumes a fi nite network of n habitat patches. In 
this model, an occupied patch will turn empty 
at rate E = e. Depending on the underlying bio-
logical processes, the colonization rate C of an 
empty patch may be assumed to behave either as 
C = ck or as C = ck/n, where c is a colonization 
rate parameter and k is the number of occupied 
patches. If the number of habitat patches n is 
kept fi xed, the two forms are equivalent, as the 

factor 1/n may be included in the parameter c. 
However, as the two forms scale differently with 
respect to the number of patches, we will con-
sider both cases separately. 

The fi rst alternative, which we call the 
occupancy-number model, assumes that the 
colonization rate of an empty patch is propor-
tional to the number of occupied patches in the 
network: C = ck. This may be the case if the size 
of the landscape (area within which the habitat 
patches are located) is constant irrespective of 
the number of habitat patches. The occupancy-
number model seems particularly appropriate 
if furthermore dispersal is global (propagules 
from each patch are distributed randomly within 
the entire landscape) and happens via a pas-
sive propagule rain, so that the propagules do 
not distinguish between the habitat patches and 
the landscape matrix. The second alternative, 
called the occupancy-frequency model, assumes 
that the colonization rate of an empty patch is 
proportional to the fraction of occupied patches 
in the network: C = ck/n. This model follows if 
we modify the above assumptions so that the 
size of the landscape and thus the area to which 
the propagules are distributed scales with the 
number of habitat patches, so that the density of 
patches (number per unit area) remains constant. 
Although these two examples represent ide-
alizations of any real situation, the occupancy-
number and occupancy-frequency models serve 
as toy models that need to be understood before 
a stochastic model in an explicit spatial setting 
will be analyzed.

In the deterministic mean-fi eld approxima-
tion, the metapopulation capacity l

M
 (or the 

amount of habitat h in Landeʼs model) of the 
occupancy-number model is l

M
 = h = n – 1, 

whereas in the occupancy-frequency model it 
is l

M
 = h = (n – 1)/n (the term –1 arises because 

once empty, a patch cannot send migrants and 
thus cannot contribute to its own colonization 
rate). Thus, in the occupancy-number model, 
there is a threshold number of habitat patches, 
n = e/c + 1, above which the metapopulation 
will persist in the deterministic sense, whereas 
in the occupancy-frequency model the threshold 
condition e/c < (n – 1)/n ≈ 1 is almost independ-
ent of the number of habitat patches. This hap-
pens because in the occupancy-frequency model, 
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adding more patches does not increase patch 
density but just enlarges the landscape, which 
is not expected to largely affect the fraction of 
occupied patches if the landscape was not very 
small to start with.

As the stochastic logistic model is a Markov 
process, its qualitative behavior is easy to 
describe. Metapopulation extinction is an absorb-
ing state, which the process will eventually reach 
with probability one. However, if the metapopu-
lation is above the deterministic threshold, the 
mean time to extinction T may be much longer 
than the time to local extinction. In this case, 
the state of the metapopulation is expected to 
converge to a quasi-stationary distribution p, 
which is obtained as the limiting distribution 
conditioned on non-extinction. Assuming that 
the initial state is derived from the quasi-station-
ary distribution, the mean time to extinction T 
is given by the subdominant eigenvalue of the 
stochastic transition matrix P. Furthermore, the 
quasi-stationary distribution p is obtained as the 
corresponding left eigenvector. In this simple 
model, an asymptotically (n→∞) exact formula 
for the mean time to metapopulation extinction 
may be derived analytically, and is given by 
(Andersson & Djehiche 1998, Ovaskainen 2001) 

                                  (9)

where p* = 1 – d/l
M
 is the equilibrium fraction 

of occupied patches. Figure 3 shows how p* and 

T increase with an increasing number of habitat 
patches in the occupancy-number and occu-
pancy-frequency models. The fi gure assumes 
that the metapopulation has been parameterized 
in a situation in which there are n = 10 habi-
tat patches (hence the two curves intersect at 
this point). If the occupancy-number model is 
assumed, the metapopulation is predicted to go 
deterministically extinct if the number of habitat 
patches is reduced to n = 6, whereas in the occu-
pancy-frequency model the metapopulation does 
not go deterministically extinct until only n = 2 
patches remain. The dissimilar behaviors of the 
two models are also seen in Fig. 3B, where time 
to extinction is more sensitive to the number of 
patches in the occupancy-number model than 
in the occupancy-frequency model. Figure 4 
examines time to extinction from a different 
viewpoint, asking how many patches are needed 
to make the time by which the metapopulation 
is expected to go extinct at least 100 times as 
long as the expected lifetime of a single local 
population. As the ‘critical  ̓ number of patches 
is now plotted against the equilibrium state p* 
of the metapopulation, the result is the same for 
both the occupancy-number and occupancy-fre-
quency models (Eq. 9).

It is worth noting here that the usual interpre-
tations of Landeʼs model (Eq. 1) as a description 
of the metapopulation consequences of habitat 
loss are in the spirit of the occupancy-number 
model (Nee 1994, Hanski et al. 1996, Carlson 
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2000, Hanski & Ovaskainen 2000). In this case, 
the extinction threshold depends strongly on both 
the properties of the landscape (density of habitat 
patches) and the properties of the species (extinc-
tion-proneness and colonization ability). It is 
indeed clear that the occupancy-number model is 
more appropriate than the occupancy-frequency 
model for the situations usually considered by 
ecologists, with an emphasis on increasing isola-
tion of the remaining habitat patches in increas-
ingly fragmented landscapes. Most importantly, 
however, more convincing stochastic models of 
habitat loss can only be constructed with explicit 
and realistic assumptions about the dependence 
of colonization rate on the spatial structure of the 
landscape, in the spirit of the spatially realistic 
metapopulation theory.

Correlated local dynamics

The theory that we have just outlined predicts 
that the time to extinction increases exponentially 
with the number of habitat patches, which implies 
that suffi ciently large metapopulations have a 
negligible risk of extinction. However, there are a 
number of reasons why this conclusion might not 
hold for most real metapopulations. Most impor-
tantly, local population dynamics are seldom 
completely independent of each other as assumed 
in the model. In this section we will examine how 
correlation in local dynamics affects the behavior 
of the stochastic logistic model.

As correlations are more naturally defi ned for 
probabilities than for rates, we will fi rst consider 
a discrete-time version of the model. To do this, 
we assume that during a short time step Dt, an 
occupied patch goes extinct with probability 
E(p) = eDt, and an empty patch becomes occu-
pied with probability C(p) = cpnDt (occupancy-
number model) or C(p) = cpDt (occupancy-fre-
quency model), where p = k/n is the fraction of 
occupied patches.

As the model assumes identical patches, we 
are not interested in which particular patches 
are occupied, just on temporal changes in the 
fraction of occupied patches p. The leading 
dynamic behavior of p may be described by the 
expected value and the variance of Dp, which is 
the random variable measuring the change in p 

during one time step. It is straightforward to see 
that if extinctions and colonizations are inde-
pendent of each other, the expected value E[Dp] 
and the variance Var[Dp] are given by (Ovaskai-
nen 2002a)

                E[Dp] = (1 – p)C(p) – pE(p),         (10)

 (11)

We will next assume that local population 
dynamics are correlated with each other. To do 
this, we denote by O

i
 � {0,1} the occupancy state 

of patch i, and by DO
i
 � {–1,0,1} the random 

variable measuring the change in O
i
 during one 

time step. Depending on the biological proc-
esses that actually generate the correlation, either 
extinctions, colonizations, or both are correlated. 
To keep this analysis as simple as possible, we 
will assume that the correlation between DO

i
 

and DO
j
 is a constant r independently of the 

occupancy states of patches i and j, which means 
that extinctions and colonizations are similarly 
correlated. This assumption is justifi ed e.g. in 
situations where environmental conditions vary 
between favourable and unfavourable. Under 
favourable conditions, extinctions are expected 
to be rare and colonizations are expected to be 
frequent, while under unfavourable conditions 
the opposite is true. This mechanism produces 
a positive correlation between extinctions 
(DO

i
 = DO

j
 = –1), a positive correlation between 
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colonizations (DO
i
 = DO

j
 = 1), and a negative 

correlation between extinctions and coloniza-
tions (DO

i
 = 1, DO

j
 = –1).

Assuming the above-described correlation 
structure, we denote the expected value and the 
variance of Dp by E(r) and Var(r), respectively. 
As the expected value of Dp depends linearly on 
C(p) and E(p), it is not affected by the correla-
tion structure, and hence

                          E(r)[Dp] = E[Dp].                  (12)

The change in variance may be derived as 
follows.

(13)

                                                                       (14)

where the fi nal step is justifi ed by the following 
reasoning. In the quasi-stationary state, coloniza-
tions of empty patches are typically as likely as 
extinctions of occupied patches, suggesting that 
C(p) ≈ E(p), in which case the term inside the 
brackets is small. If the metapopulation is not 
close to the equilibrium, the above reasoning 
does not hold. However, in the extreme cases 
in which p is close to zero or one, the factor 
p(1 – p) is small, and the approximation holds 
again. Figure 5A shows that the approximation is 
typically very good also for other values of p.

Comparing Eqs. 12 and 14 with Eqs. 10 and 
11, we conclude that the effect of correlated 
dynamics is largely captured by changing the 
actual number of habitat patches n to an effective 
number of habitat patches n

e
, which is given by

                                             (15)

To see that the formula for n
e
 is intuitive, note 

fi rst that if extinctions and colonizations happen 
independently (r = 0), the effective number 
of habitat patches equals the actual number of 
patches (n

e
 = n). In the other extreme, in which 

r = 1, all patches are in complete synchrony, and 
thus the network behaves essentially as a single 
patch (n

e
 = 1). If 0 < r < 1, the effective number 

n
e
 increases with the true number n, converging 

asymptotically to the fi nite value 1/r as n→∞ 
(Fig. 5B).

Let us next return to the continuous-time 
model, the dynamics of which are approximated 
by a diffusion process with drift m(p) = E[dp]/dt 
and infi nitesimal variance s2(p) = E[dp2]/dt. In 
the case r = 0, these are given by (Karlin & Taylor 
1981, Sæther et al. 1999, Ovaskainen 2002a) 

m(p) = C(p)(1 – p) – E(p)p,          (16)

                       (17)

Assuming that Dt is infi nitesimally small (in 
which case we may denote it by dt), the above 
argument for the discrete-time model extends to 
the continuous-time model, and thus the formula 
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(Eq. 15) holds also in this case. Substituting the 
value for n

e
 to Eq. 9 we may examine how the 

mean time to extinction behaves as the number 
of patches increases. We fi nd that in the occu-
pancy-frequency model, for r > 0 the mean time 
to extinction approaches a fi nite asymptote, the 
value of which decreases with an increasing value 
of r. To see why this should be the case, note 
that the effective number of patches approaches 
a fi nite asymptote, and that in the occupancy-fre-
quency model the deterministic drift is essentially 
independent on the actual number of patches. In 
the occupancy-number model, the time to extinc-
tion is found to behave according to a power-law 
T~n1/r. This result is analogous to what has been 
found for extinction models for single popula-
tions, in which environmental stochasticity 
changes the scaling of the extinction risk with 
respect to carrying capacity from exponential 
scaling to a power law scaling (Lande 1993, 
Foley 1994). Note that correlated stochastic 
local dynamics represent a form of stochastic-
ity in metapopulation dynamics (called regional 
stochasticity) that is analogous to environmental 
stochasticity in local dynamics (Hanski 1991).

Transient dynamics

The mean time to extinction discussed in the 
previous section was derived without specify-

ing how many of the patches were initially 
occupied. By assuming that the initial state of 
the metapopulation was derived from the quasi-
stationarity distribution p, we actually assumed 
that the metapopulation had already persisted 
for a long time before the point in time from 
which the mean time to extinction was meas-
ured. However, it is often of interest to account 
explicitly for the initial condition, and the study 
of transient dynamics has gained a lot of inter-
est (see e.g. Alonso & McKane 2002, Etienne 
& Nagelkerge 2002). For example, if a species 
is to be introduced into an initially empty patch 
network, the number of patches into which it is 
translocated in the fi rst place may make a big 
difference to the probability that the species will 
successfully invade the network (Hanski 1999: 
fi g. 10.7). This is illustrated in Fig. 6, in which 
we analyze extinction in the stochastic logis-
tic model with different initial conditions. As 
expected, an initial occupancy state with a small 
number of occupied patches leads to a transient 
period with an exceptionally high extinction 
rate, whereas a high initial occupancy state leads 
to a transient period with an exceptionally low 
extinction rate. In the course of time, the effect of 
the initial condition decreases, and the extinction 
rate (conditioned on non-extinction by that time) 
converges to the extinction rate that is given by 
the quasi-stationary distribution (Fig. 6A). None-
theless, the initial condition still has an effect on 
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the cumulative distribution describing the prob-
ability that the metapopulation has gone extinct 
before a given time (Fig. 6B).

We have previously used the spatially realis-
tic Levins model to analyze how the length of the 
transient period following an environmental or 
population dynamic perturbation depends on the 
interplay between the properties of the species 
and the structure of the fragmented landscape 
(Ovaskainen & Hanski 2002). We concluded that 
the length of the transient period may be written 
as the product of four factors. First, as illustrated 
in Fig. 6, the length of the transient period 
increases with the distance between the present 
state and the equilibrium state. Second, the 
length of the transient period is longer for spe-
cies which have slow dynamics (e.g. due to long 
life-span) than for species with fast dynamics. 
Third, the length of the transient period is longer 
in a patch network which has a few large patches 
than in a network with many small patches, as the 
turnover rate is slower for larger patches. Finally, 
and most importantly, the length of the transient 
period is expected to be especially long for spe-
cies that are located close to their extinction 
threshold following the perturbation. This fourth 
point has the important consequence that land-

scapes that have experienced recent habitat loss 
may have a number of species that are located 
below their deterministic extinction threshold. 
The number of such species that are doomed to 
extinction but have not yet had time to go extinct 
has been termed the extinction debt (Tilman et 
al. 1994, Hanski & Ovaskainen 2002).

An empirical example

In this section we illustrate the theory described 
in the previous sections with an empirical exam-
ple on the Glanville fritillary butterfl y (Melitaea 
cinxia) metapopulation in the Åland Islands in 
southwest Finland (Hanski 1999). The habitat 
patch network for this species in Åland con-
sists of ca. 4000 patches (dry meadows), but we 
will here consider just one sub-network of 56 
patches (Fig. 7A). As the species has an annual 
life-cycle, we will model its metapopulation 
dynamics with a discrete-time version of the 
SRLM. This is otherwise the same model as the 
continuous-time SRLM, but the colonization rate 
C

i
 and the extinction rate E

i
 are replaced by the 

colonization and extinction probabilities  
and , respectively (Ovaskainen 2002a).

x coordinate

y
 c

o
o

rd
in

a
te

A

x coordinate
y
 c

o
o

rd
in

a
te

B

1 2 3 4 5

1

2

3

4

5

6

1 2 3 4 5

1

2

3

4

5

6

Fig. 7. A network of habitat patches inhabited by the Glanville fritillary butterfl y in the Åland Islands in SW Finland. 
The sizes of the dots are proportional (A) to the areas of the habitat patches and (B) to the values W of the habitat 
patches. The contour lines in panel B indicate the relative value which a hypothetical patch would attain if added to 
a particular location within the network. The spatial unit is km. Parameter values are given in the text. 



ANN. ZOOL. FENNICI Vol. 40 • Extinction threshold in metapopulation models 93

To parameterize the model, we use presence-
absence data for the occurrence of the butterfl y 
in the patch network in the period 1993–2001. 
These data have been collected in each autumn 
in the course of a long-term project (Hanski 
1999). We parameterized the model with the 
maximum likelihood method using data on the 8 
annual transitions. The parameter estimates thus 
obtained were a = 0.84, z

ex
 = 0.17, z

em
 = 0.07 

and z
im

 = 0.30 (using data from the entire Åland 
Islands), and e = 0.38 and c = 0.083 (using 
data from the network shown in Fig. 7A). The 
parameters a, z

ex
, z

em
 and z

im
 represent structural 

model parametes, and hence they were esti-
mated from the entire Åland data set, whereas 
the parameters e and c may be considered to be 
network specifi c, as the different networks in the 
Åland Islands vary in terms of habitat quality 
(Hanski 1999).

The model predicts that the equilibrium 
occupancy state is p

l
* = 0.51, and thus the 

metapopulation is well above the deterministic 
threshold for persistence. The contributions that 
the individual habitat patches make to metapop-
ulation dynamics are illustrated by the measure 
W in Fig. 7B. As expected, patch values are high 
for large and well-connected patches.

To illustrate the actual dynamics of the 
metapopulation, we start by showing a single 
simulation run (Fig. 8). In panel B in Fig. 8, we 
have accounted for regional stochasticity by esti-
mating the parameters e and c separately for the 
8 annual transitions in the data set. As expected, 
based on the theoretical results discussed in the 

previous section, regional stochasticity increases 
stochastic fl uctuations and thus increases the 
extinction risk of the metapopulation. This is 
clearly seen in Fig. 9, which depicts the quasi-
stationary distributions for the two models. The 
extinction risk is determined by the left-hand 
tail of the quasi-stationary distribution, and is 
6.6 ¥ 107 years for the model without regional 
stochasticity and 7770 years for the model 
with regional stochasticity (estimates based on 
the effective metapopulation size method, see 
Ovaskainen 2002a).

The Glanville fritillary butterfl y has been 
classifi ed as an endangered species in Finland 
(Hanski 1999, Rassi et al. 2001). The extinction 

B

Time (t)

100 200 300 400 500

0.2

0.4

0.6

0.8

1A

Time (t)

O
c
c
u
p
a
n
c
y
 s

ta
te

 p
l

100 200 300 400 500

0.2

0.4

0.6

0.8

1

Fig. 8. Simulation runs of the Glanville fritillary model. Panels A and B show the results for models with constant 
and temporally varying parameter values, respectively. The temporally varying parameter values e = (0.24, 0.48, 
0.33, 0.34, 0.17, 0.30, 0.53, 0.04) and c = (0.14, 0.10, 0.10, 0.33, 0.08, 0.08, 0.06, 0.22) were estimated separately 
for the 8 annual transitions.

Occupancy state pl

0.2 0.4 0.6 0.8 1

1

2

3

4

5

C

V

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

Fig. 9. The quasi-stationary distribution of the Glanville 
fritillary model. The dots are based on a long simulation 
of the spatially realistic model, the lines show the ana-
lytical result based on the effective metapopulation size 
method (Ovaskainen 2002a). The letters C and V refer 
to models with constant and temporally varying param-
eter values, respectively.



94 Ovaskainen & Hanski • ANN. ZOOL. FENNICI Vol. 40

risk we have just estimated seems negligible in 
the time scale of tens or even hundreds of years, 
which raises the question whether the species 
has been misclassifi ed. There are several reasons 
why this is not the case. First, changes in land 
use have greatly reduced the numbers of dry 
meadows that are suitable for the species in Fin-
land. In fact, the Glanville fritillary has already 
gone extinct from the mainland Finland, appar-
ently because of habitat loss and fragmentation 
(Hanski 1999). The species is currently restricted 
to an area within 2000 km2 in the Åland Islands 
(Hanski 1999), which is a suffi cient reason to 
classify it nationally endangered. Land use prac-
tices have changed less drastically in the Åland 
Islands than in mainland Finland, but nonethe-
less some changes have occurred (Hanski et al. 
1996) and the present occupancy pattern may be 
somewhat optimistic due to the possibility that 
the species is presently in a transient state fol-
lowing habitat reduction. Another reason why 
the small extinction risk estimated above has to 
be interpreted with caution is that the empirical 
data for parameter estimation consist of only 8 
annual transitions in patch occupancy, which 
themselves show much variation (Fig. 10). As 
the extinction risk of most (meta)populations is 
determined by the occurrence of exceptionally 
unfavorable years, it may well be that our esti-
mates are severe underestimates simply because 
the empirical data set happens to lack especially 

bad years. In several years in the 1990s, the 
butterfl y populations could have performed 
extremely poorly had the periods of summer 
drought lasted one or two weeks longer than they 
actually happened to do (I. Hanski unpubl.).

We can perform a limited analysis of whether 
our estimate of the long-term extinction risk is 
an underestimate, by examining how much the 
extinction risk estimate changes with an increas-
ing amount of data. The results show that the esti-
mate of p

l
* stabilizes quickly (Fig. 10), and hence 

it seems likely that the present estimate p
l
* = 0.51 

is relatively robust with respect to regional sto-
chasticity and that the metapopulation is indeed 
well above the deterministic threshold for persist-
ence. Note, however, that the most pessimistic 
single annual transition would predict p

l
* = 0. In 

contrast, the estimate of the mean time to metap-
opulation extinction remains highly variable even 
after several years of data (note the logarithmic 
scale). For example, one exceptionally bad year 
(transition number 7) dropped the estimate of T to 
a small fraction (3%) only of what it was before 
that observation. Thus it seems impossible to 
reliably estimate the extinction risk of this metap-
opulation with the amount of data presently avail-
able, even if a 9-yr data set for hundreds of local 
populations is much better than what is typically 
available for most species. These results reinforce 
the opinion of many other authors that estimating 
the long-term risk of extinction is next to imprac-

Fig. 10. The behavior of the Glanville fritillary model as a function of increasing amount of data used for estimating 
the measures calculated. The two panels show (A) the equilibrium state p

l
* and (B) the mean time to extinction T. 

The joined dots are based on cumulative data (up to that year) and the unjoined dots on data for a single transition. 
The mean time to extinction was estimated by calculating the effective size of the metapopulation (see Ovaskainen 
2002a for details) except for the single transition for year 7, for which the estimate T(7) = 18.4 is an average of 1000 
simulation runs initiated with all patches occupied (and is thus an overestimate of T). The values T(4) = 1.2 ¥ 1019 
and T(8) = 1.4 ¥ 1041 based on data for single transitions are not shown in the fi gure.
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tical for most species (Beissinger & Westphal 
1998, Ludwig 1999, Hanski 2002), and is likely 
to be useful only when an exceptional amount of 
data is available and extinction is imminent (e.g. 
Engen et al. 2001).

Concluding remarks

In this paper, we have discussed extinction 
thresholds in the context of metapopulation 
models. We have examined the behavior of 
extinction thresholds with respect to the prop-
erties of the species, the properties of the land-
scape, and variation in environmental conditions. 
We conclude by summarizing our main results as 
fi ve ecologically relevant messages.

First, the qualitative behaviors of stochastic 
and deterministic models differ fundamentally 
from each other. Deterministic models predict a 
simple threshold condition l

M
 > d, above which 

the metapopulation is expected to persist forever, 
and below which the metapopulation is doomed 
to extinction. In contrast, a fi nite metapopulation 
will always go extinct with probability one in a 
stochastic model, where the “extinction thresh-
old” must be interpreted via the distribution of 
the time to extinction. In a stochastic model, a 
metapopulation may be viewed to be above the 
extinction threshold if it is unlikely to go extinct 
within a relevant time period. To calculate the 
time to extinction, one needs to account for the 
stochastic fl uctuations around the deterministic 
mean-fi eld dynamics. As the relative role of 
stochasticity increases with decreasing number 
of habitat patches, small metapopulations in 
particular may have a substantial extinction risk 
although they would be well above the determin-
istic extinction threshold.

Second, in the spatially realistic context, the 
contributions that the habitat patches make to 
the persistence of the metapopulation — that is, 
its distance from the extinction threshold — do 
not depend only on the size and quality of those 
patches but also on their locations within the 
patch network. This is illustrated in Fig. 7B, in 
which the contour lines reveal the core area of 
the patch network.

Third, while the Levins model, which is 
the archetypal metapopulation model, pre-

dicts that the metapopulation will respond in a 
simple manner to environmental and population 
dynamic perturbations, more complicated models 
may represent a different picture. In particular, 
introducing biologically motivated modifi ca-
tions such as the Allee effect or the rescue effect 
may lead to more complex dynamics, including 
the possibility of alternative stable equilibria 
(Fig. 2), which may lead to abrupt “unexpected” 
extinctions from a high occupancy state.

Fourth, transient dynamics should be explic-
itly considered whenever the metapopulation or 
the environmental conditions have not remained 
stable for a long period of time. This is espe-
cially relevant in human-modifi ed landscapes, 
many of which have experienced recent and 
ongoing habitat loss and fragmentation. Ignoring 
transient dynamics may lead to overestimation of 
the capacity of the landscape to support a viable 
metapopulation of a particular species, and thus 
ignoring transient dynamics in situations where 
landscapes have changed greatly gives an overly 
optimistic view of the persistence of metapopu-
lations.

Fifth, environmental stochasticity may be 
spatially correlated. Such correlation (regional 
stochasticity) does not affect the mean-fi eld 
dynamics and hence leaves the deterministic 
threshold condition unchanged, but regional 
stochasticity may greatly amplify stochastic 
fl uctuations (Fig. 8) and thus increase the extinc-
tion risk. Furthermore, the presence of regional 
stochasticity makes it diffi cult to reliably assess 
the risk of extinction (Fig. 10).
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