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A simple equation relates mean population size ( ), mean initial size of cohorts 
( ), and life expectancy at birth ( ) in persisting populations that are fl uctuating 
between upper and lower boundaries: . This equation indicates that 
the study of differences in size between two populations, of global and local common-
ness and rarity, and of the limitations to population growth should focus on ecological 
factors affecting  and . The equation also has a potential practical application 
for those countries, such as China, interested in designing policies for limiting popula-
tion growth.

Introduction

Two fundamental equations of population 
dynamics are the exponential and the logistic. 
In the exponential equation, N

t
 = N

0
ert, N

0
 is 

population size at time 0, N
t
 is population size 

at time t, r is the per capita rate of change in 
numbers, and e is the base of the natural loga-
rithms. With this equation, N

t
 cannot be calcu-

lated without knowledge of N
0
 and r, the latter 

itself being determined from two or more values 
of N at different times (e.g., t

1
, t

2
,
 
t
3
,
 
etc.). In the 

logistic equation, DN/Dt = N
t
 r

m
[(K – N

t
)/K], DN 

is the difference between N
t
 and N

t + 1
, K is the 

“carrying capacity of the environment” or the 
“equilibrium population size,” and r

m
 is the 

intrinsic rate of increase, that is, the maximum 
unimpeded growth rate. With this equation, DN 
cannot be calculated without knowledge of N

t
, 

K, and r
m
, the latter two parameters being fi tted 

constants. Thus, population size (N) or change 
in population size (DN) cannot be determined 
from parameters that are independent of popula-
tion size itself.

In this paper, I present a simple equa-
tion relating mean population size ( ), mean 
number of eggs laid or young born in each 
cohort ( ), and mean life expectancy at birth 
( ): . This novel equation 
allows the calculation of mean population size 
from independently determined demographic 
parameters and has both theoretical and practical 
applications. The two parameters,  and , 
are rarely, if ever, calculated by ecologists, much 
less discussed in the ecological literature. Nev-
ertheless, these may be useful in understanding 
the commonness, rarity, and dynamics of popula-
tions. After explaining the rationale of the equa-
tion, I provide some examples of how this equa-
tion could be used in the study of populations.
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Relationship between population 
size, survival, and reproduction

A census of a population of living individuals 
occurs on some date of interest within some area 
of interest to the counter. A census at time t may 
be a simple count of the population (N

t
), or it 

may be more elaborate, including counts of indi-
viduals by age and by sex, in which case,

                     ,               (1)

where n
m,x,t

 is the number of males and n
f,x,t

 the 
number of females of age x alive at time t. For 
ease in presenting the following equations, I 
have assumed a sex ratio at birth of 1.0 and no 
difference between males and females in sur-
vival. The equation may be rewritten to accom-
modate differences between the sexes should the 
need arise (see Eqs. 11 and 14).

Let us assume, for purpose of discussion, 
that populations comprise individuals that can be 
identifi ed by age and by sex. If we fi rst imagine 
an idealized population with a stable age distri-
bution, that is, a population in which the propor-
tion of individuals of each age class is constant 
in time, then the number of individuals (n

x,t
) of a 

cohort surviving to age x at time t is,

                             n
x,t

 = n
0,t – x

 l
x
,                        (2)

where n
0,t – x

 is the number of eggs laid or young 

born in that cohort between time t – x and time 
t – x + 1, and l

x
 is the probability of members 

of a cohort surviving from birth to age class x. 
Survival from birth to age class x (x > 0) is given 
by,

                               ,                          (3)

where l
0
 = 1.0, and s

x
 is the probability of surviv-

ing from age class x to age class x + 1.
A populationʼs size at time t (N

t
) is the sum 

of the individuals of all cohorts, excluding indi-
viduals of age class 0,

                     . Erratum (4) 

Age class 0 is excluded from N
t
 because it 

represents the number of births between times t 
and t + 1. Natural populations, however, seem 
never to be in the idealized state described 
above. Typically, populations fl uctuate between 
an upper and lower bound with a long-term per 
capita growth rate (r) of zero, and the number in 
each age class varies between censuses, as shown 
in Table 1. In such populations, however, a good 
estimate of the mean population size ( ) over a 
period of time is given by,

                          ,                    (5)

where  is the mean initial size of cohorts.
In the illustrative population (Table 1), 

Table 1. Annual censuses of a hypothetical population. The age-specifi c survival rates (sx) are determined from, 
; lx is calculated with Eq. 3.

Age Time sx lx 

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 53 92 69 79 51 79 15 77 85 80 39 85 25 48 54 0.5245 1.0000
1 27 7 74 50 33 17 69 14 7 43 20 25 45 20 36 0.4812 0.5245
2 7 18 0 60 15 29 11 23 10 0 19 15 5 12 0 0.3482 0.2524
3 0 5 16 0 2 14 13 5 2 3 0 1 3 3 11 0.2836 0.0879
4 2 0 1 3 0 1 4 7 0 0 0 0 0 1 2 0.2632 0.0249
5 2 1 0 0 0 0 0 2 2 0 0 0 0 0 0 0.2857 0.0066
6 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0.0000 0.0019

 91 123 160 192 101 140 112 128 107 127 78 126 78 84 103

 38 31 91 113 50 61 97 51 22 47 39 41 53 36 49

                 1.8981

http://www.sekj.org/PDF/anz41-free/Murray-errata.pdf
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lacking a stable age distribution,  = 62.1 and 
 = 1.8981. Thus, from Eq. 5,  = 62.1 ¥ 

1.8981 – 62.1 = 55.7. The mean population 
size, determined directly from the census data 
( ), is 54.6.

Equation 5 may be useful for understanding 
some theoretical and practical ecological prob-
lems.

Implications

Demography of common and rare species

If we have two species, one of them abundant, 
the other scarce, they may each have identi-
cal birth, death, and growth rates, generation 
time, life expectancy, and age structure. In 
Table 2, population B is 50 times larger than 
Population A. Nevertheless, both popula-
tions have the same age-specifi c survival rates 
(s

x
 = n

x + 1,t + 1
/n

x,t
), and the same mean age-specifi c 

fecundity ( , where a is age of 
fi rst breeding, and w is age of last breeding), 
and the same empirical age structure (Table 2). 
With the same age-specifi c survival rates and 
mean fecundity, the two populations must have 
identical life tables (Table 3), and, thus, have 

the identical birth (b), death (d), and growth (r) 
rates, life expectancy at birth ( ), generation 
time (T), and proportion of individuals in each 
age class (c

x
). The difference in size between the 

two populations is a result only of their having 
different initial size of cohorts, n

0
.

This result indicates that when studying why 
these two populations differ in size, ecologists 
should be looking for factors that limit the size 
of n

0
, a parameter that is not now calculated by 

ecologists. Of course, two populations with the 
same  but different  should also be of dif-
ferent size (Eq. 5). Thus, in trying to determine 
why one species is rare and another common, we 
should be looking for the causes of differences 
between populations in  or , or both.

 is affected by all those factors causing 
mortality: predation, parasites, disease, accident, 
food shortage, competition, etc. This seems fairly 
straightforward. If two populations have the 
same mean initial size of cohorts, and if a popu-
lation suffers greater mortality from any cause 
than another population, then we might expect 
that it would be smaller in size. Alternatively, if 
they do not differ in life expectancy at birth (i.e., 
they have the same survivorship schedule and, 
thus, same ), then they must differ in the 
mean initial size of cohorts ( ).

Table 2. Censuses, age-specifi c survival (sx), proportion of age class in population (cx), and mean age-specifi c 
fecundity (mx) for two populations of different size (assume no differences between males and females in each 
population). Mean fecundity =  = 2.8018, when breeding begins at two years of age. Population size = 

.

 Population A Population B
  

Age class x nx (t = 0) nx (t = 1) sx cx nx (t = 0) nx (t = 1) sx cx

0 622 622 0.2508 0.6220 31 100 31 100 0.2508 0.6220
1 156 156 0.5962 0.1560 7 800 7 800 0.5962 0.1560
2 93 93 0.6022 0.0930 4 650 4 650 0.6022 0.0930
3 56 56 0.6071 0.0560 2 800 2 800 0.6071 0.0560
4 34 34 0.5882 0.0340 1 700 1 700 0.5882 0.0340
5 20 20 0.6000 0.0200 1 000 1 000 0.6000 0.0200
6 12 12 0.5833 0.0120 600 600 0.5833 0.0120
7 7 7 0.0000 0.0070 350 350 0.0000 0.0070

Sum 1 000 1 000  1.0000 50 000 50 000  1.0000

Population size 378 378   18 900 18 900  
Number breeders 222 222   11 100 11 100  
mx (as eggs) 2.8018    2.8018   
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The number of eggs laid or young born 
between t and t + 1 (i.e., n

0,t
) is a function of the 

number of breeding females alive at time t (some 
fraction of N

t
), the mean clutch or litter size, 

and the number of clutches or litters produced 
per female. The question: Why so many eggs 
or young?, however, ultimately means: Why 
so many females? The number of females in a 
population is affected by many environmental 
factors, such as the total amount of living space 
(nesting sites, territories) available, the total 
amount of available food, and the amount of 
both required for a female and her mate to sur-
vive and to rear their offspring, the abundance of 
competitors, predators, and pathogens, and the 
quality of the physical environment. The clutch 
or litter size and the number of clutches or litters 
produced per female are also affected by many 
environmental factors. Most populations of dif-
ferent size may often differ in both  and .

For a simple example, if there were twenty 
cavities acceptable to females for breeding in 
an area, then a maximum of twenty females 
could breed at any time. If females produced a 
maximum of twelve eggs or young in a breeding 
season, then the maximum n

0
 for the popula-

tion would be 240. If the number of breeding 
females, the clutch or litter size, and the number 
of clutches or litters produced vary in response 
to other environmental variables, then the mean 
number of breeding females should be < 20 and 

 < 240. Over a period of years Eq. 5 should 
hold.

Hart (2001) reported that two populations of 
a Hawaiian honeycreeper (Aves: Drepanidinae), 

the Hawaii Akepa Loxops coccineus coccineus, 
living in close proximity on the island of Hawaii, 
have maintained different densities (one three 
times greater than the other) for more than fi f-
teen years, despite similarities in annual adult 
survival, reproductive success, age structure, 
mean fat level, mean weight, external indicators 
of disease, and sex ratios. Data on predation, 
disease, and the availability of food failed to 
support hypotheses that these factors might be 
responsible for the differences between the high 
and low density populations (Hart 2001). Hart 
(2001) and Freed (2001) proposed the hypoth-
esis that the number of large trees with suitable 
nest holes limited the number of breeders in each 
population, the big trees with suitable nest holes 
being more abundant where the akepa was more 
dense. This hypothesis and data, then, are con-
sistent with the implications of Eq. 5.

Distribution and abundance

There are several predictions that follow from 
Eq. 5, which seem consistent with empirical 
evidence. Globally (total number in the world), 
a populationʼs numbers should be a function 
of habitat availability. A species occupying a 
geographically widespread habitat or a wide 
range of habitats should likely be a globally 
numerous species because there could be many 
breeding females and, thus, large . A species of 
limited range and habitat should be less numer-
ous because it would likely have fewer breed-
ing females and a smaller  than a widespread 

Table 3. Life table for populations A and B.

Age class x sx lx mx lxmx xlxmx lxmxe
–rx lxe

–rx cx

0 0.2508 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.6220
1 0.5962 0.2508 0.0000 0.0000 0.0000 0.0000 0.2508 0.1560
2 0.6022 0.1495 2.8018 0.4189 0.8378 0.4189 0.1495 0.0930
3 0.6071 0.0900 2.8018 0.2523 0.7568 0.2523 0.0900 0.0560
4 0.5882 0.0547 2.8018 0.1532 0.6126 0.1532 0.0547 0.0340
5 0.6000 0.0322 2.8018 0.0901 0.4505 0.0901 0.0322 0.0200
6 0.5833 0.0193 2.8018 0.0541 0.3243 0.0541 0.0193 0.0120
7 0.0000 0.0113 2.8018 0.0315 0.2207 0.0315 0.0113 0.0070

Sum  1.6077  1.0000 3.2027 1.0000 1.6077 1.0000

R0 = ∑lxmx = 1.0000, T = ∑xlxmx/∑lxmx = 3.2027, r = ln (R0)/T = 0.0000
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species. Locally, within a habitat, a colonial 
species, with nests close together, should be 
more numerous than a population with large ter-
ritories because it is likely to have more breeding 
females and a greater . These are only broad 
generalizations. Each species should be analyzed 
separately because there is much variation. For 
example, despite a limited breeding range (some-
times a single island or limited number of small 
islands) and low fecundity (less than a single 
egg per female per year), some seabirds may be 
extremely numerous because they are colonial 
(allowing a large number of females to breed 
and eggs to be laid

 
in a small space — a large 

) and subject to low mortality (a large ). 
Alternatively, a species could have a limited suit-
able habitat within a wide geographic range, in 
which case it could be locally abundant but glo-
bally scarce. The situation for each species could 
be different, and these demographic differences 
should be of interest in investigating the distri-
bution and abundance of species. Regardless of 
the complexity of pattern in the distribution and 
abundance of habitats, within any small area the 
more numerous species should have a greater 

, greater , or both. The diffi cult job for 
ecologists remains to determine why  and  
differ among populations and species.

Another simple inference regards the rela-
tive numbers of predator and prey. Predatory 
species tend to be longer lived than their prey 
(greater ), but their prey are more numer-
ous (greater ). Thus, the mean initial size of 
cohorts ( ) should be greater in the prey species 
than in the predator population.

These inferences are hardly surprising. What 
is interesting is that they are all consistent with a 
simple, universally applicable mathematical equa-
tion. Thus, the equation may be useful in analyz-
ing differences between populations and species.

Population dynamics

Equation 5 describes an empirical relation-
ship (i.e., one that could be shown directly to 
be true or false by population censuses over a 
period of time because there are no hypothetical 
terms) and provides us with two new parameters 
( , ) to study in our investigation into the 

deeper issues of population dynamics, such as 
the debate about the role, or even the existence, 
of density-dependent negative-feedback loops 
between a populationʼs size, N, and its growth 
rate (r), which has been a central problem for 
population ecologists for much of the past cen-
tury (e.g., Nicholson 1933, 1954, Andrewartha 
& Birch 1954, Lack 1954, 1966, Murray 1979, 
1982, 1994, 2000a, Berryman 1991, 1997, den 
Boer 1991, Turchin 1995, 1999, White 1993, 
2001, Berryman et al. 2002).

In this regard, we should note that the rela-
tionship between one count (N

t
) and the next 

(N
t + 1

) in a population is,

 N
t + 1

 = N
t
 + B

t
 – D

t
 + V

t
 – W

t
, (6)

where B
t
 is the number of births (note that 

B
t
 = n

0,t
), D

t
 is the number of deaths, V

t
 is the 

number of immigrants, and W
t
 is the number of 

emigrants, occurring between times t and t + 1. 
Dividing both sides of this equation by N

t
, we 

have,

                ,          (7)

                 ,           (8)

                  r
t
 = ln (1 + b

t
 – d

t
 + v

t
 – w

t
),            (9)

where e is the base of the natural logarithms, r
t
 

is the per capita growth rate, l
t
 the fi nite growth 

rate, b
t
 the birth rate, d

t
 the death rate, v

t
 the 

immigration rate, and w
t
 the emigration rate 

between times t and t + 1. Furthermore, from 
Eq. 6,

            DN = N
t + 1

 – N
t
 = B

t
 – D

t
 + V

t
 – W

t
.    (10)

According to population regulation theory 
(e.g., Berryman et al. 2002, Sibly & Hone 
2002), a populationʼs density (N ) feeds back 
negatively on its per capita growth rate (r). Pre-
sumably, as the populationʼs density increases, 
the increasing competition for resources, or 
increasing exposure to predation and disease, 
or other factor decreases the probability of 
individuals  ̓ successfully breeding or increases 
the probability of their dying. Eventually, a 
population stops growing because the death rate 
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exceeds the birth rate. Although a decreasing r 
with increasing N is a necessary condition for 
regulation, it is not a suffi cient condition (Ber-
ryman et al. 2002).

Suppose that a populationʼs B, D, V, W, and, 
therefore, DN (Eq. 10) are constants over some 
period of time. Suppose that DN is > 0. The pop-
ulation would grow additively by DN individuals 
per year and nevertheless have decreasing birth 
(b), death (d), immigration (v), and emigration 
(w) rates. The growth rate (r), too, would be 
decreasing with increasing N, despite the facts 
that DN is constant and the population is growing 
toward infi nite size. The growth rate is decreas-
ing not because of feedback between population 
size (N ) and B, D, V, or W, according to the 
theory, but because N is getting bigger relative to 
B, D, V, or W. The point here is that a decreasing 
r with increasing N can occur in the absence of 
regulation. 

In order to understand the dynamics of this 
population, we must determine whether the 
decreasing r with increasing N is a consequence 
of decreasing B or V or increasing D or W. This 
would require plotting B, D, V, and W against N. 
These plots are not done by ecologists, so we 
do not know how these parameters vary with 
N. Nevertheless, Lack (1966) showed that the 
mean clutch size at time t (C

t
) in the great tit 

Parus major decreased with increasing popula-
tion size. Because the great tit at Marley Wood 
begins breeding at age one, is essentially single-
brooded, and lays few replacement clutches, its 
mean clutch size is close to its birth rate (i.e., 
B/N ). Calculating B

t
 from N

t
 ¥ C

t
 and then plot-

ting B
t
 vs. N

t
, however, shows that the number 

of eggs laid (B) increases with increasing N 
(Murray 1999). Thus, the decreasing clutch size 
is an ineffective regulating factor, as Lack (1966) 
himself recognized. A plot of B against N would 
be more informative about feedback than the 
usual plot of b against N. The plot of B

t
 vs. N

t
 is 

the equivalent of a plot of n
0,t

 vs. N
t
.

A practical application: managing 
population growth in China

In an effort to control the countryʼs popula-
tion growth, the government of the Peopleʼs 

Republic of China in the mid-1960s began 
to promote a policy of later marriage, longer 
intervals between births, and fewer children per 
female. This resulted in a precipitous decline in 
Chinaʼs fertility rate (Coale et al. 1991). Nev-
ertheless, in 1979 the government imposed a 
one child per family policy, which, if continued 
indefi nitely, should result in extinction. Thus, the 
population policy will have to change again. A 
governmentʼs changing policy every few years 
on such an important social issue would not 
inspire confi dence. Equation 5 may provide a 
means to manage population growth for those 
governments with a desire to do so. Equation 5 
is simple, and the alternatives easily understood. 
Although I use data on China for illustration, I 
emphasize that the discussion is not about China 
and its population problem. I have chosen China 
for illustrative purposes because the necessary 
data were readily available.

Equation 5 tells us that the mean steady-state 
size of a population ( ) is a function of the mean 
number of babies born each year ( ) and mean 
life expectancy at birth ( ). If a study of 
resource availability and consumption shows 
that the maximum population size that could be 
sustained by its most limiting factor was N per-
sons, and if a consensus among the people was 
to maintain or increase current mean life expect-
ancy, then Eq. 5, modifi ed to refl ect differences 
between males and females in their frequency 
at birth and subsequent survival, could tell us 
exactly how many babies should be born in each 
year in order to maintain a sustainable popula-
tion at a given size,

                     ,             (11)

where  and  are the mean numbers of 
males and females, respectively, born per year, 
and l

x(m)
 and l

x(f)
 are the probabilities of males and 

females, respectively, born alive and surviving 
to subsequent ages x. Furthermore, if the male/
female ratio at birth is a, then

                               = a                       (12)

and
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                           (13)

           .   (14)

In order to illustrate the consequences of 
alternative population policies, let us consider 
age-specifi c survival data from Beijing in the 
Peoples Republic of China, obtained in 1981 
(CASS 1989), which were extrapolated by 
me beyond age 90 to age 100 by extending a 
regression of age-specifi c survival rates from 
age 80 to 90. Beijing has the best survivorship 
in China, and females have better survival than 
males. From these data the mean life expectancy 
of males ( ) is 71.0 years and of females 
( ) is 74.0 years. The male/female ratio (a) 
at birth is 1.068 (Song et al. 1985).

The number of births recorded each year 
between 1962 and 1975 in China varied between 
about 21 and 30 million with a mean of 25.8 mil-
lion (Coale 1984). If the mean number of babies 
born each year ( ) over a prolonged period of 
time were 25.8 million (13 324 178 males and 
12 475 822 females; ), then, from 
Eq. 11 or Eq. 14, the steady-state size should be 
about 1.859 billion, if it could be sustained.

Suppose, however, that the experts in evalu-
ating the resources (e.g., food, water, wood prod-
ucts, energy) available to the Chinese population 
decide that, for a sustainable and desirable qual-
ity of life, the population of China should not 
exceed 650 million (Song et al. 1985). In order 
to maintain a population of 650 million, Eq. 11 
or Eq. 14 tells us that the average number of 
babies born each year should be only about 9.1 
million in a steady-state population of 650 mil-
lion people with the life expectancies of 71.0 
years for males and 74.0 years for females. This 
population could be sustained at 650 million 
with more babies but a shorter life expectancy or 
fewer babies and a longer life expectancy.

The difference between 25.8 million and 
9.1 million babies born each year indicates the 
magnitude of change that must occur in China 
to bring a growing population of more than 1.2 
billion down to a sustainable steady-state size of 

650 million. The methods of implementing such 
a policy are beyond the scope of this paper.

Discussion

A simple equation relates mean population size 
( ) to mean initial size of cohorts ( ) and mean 
life expectancy at birth ( ): . 
Thus, two populations of different size must differ 
in , , or both. Comparing two populations 
of the same size, the population with a greater 

 must have a smaller ; that with a greater 
 must have a smaller . Because  and  

are not now calculated or reported by ecologists 
in their work, completely evaluating the useful-
ness of Eq. 5 cannot be determined by a review 
of the literature and relating those parameters to 
a plethora of empirical work. The few examples 
discussed above indicate the potential for the wide 
applicability of the equation.

My greatest disappointment has been my 
failure to fi nd relevant data (  and ) on non-
human populations in the literature. Neverthe-
less, almost any long-term study of populations 
of marked, long-lived (> 1 yr.) individuals should 
have the raw data for the calculation of, at least, 
good estimates for these parameters. Ecologists 
probably know the demography of birds better 
than the demography of any other taxon. Nev-
ertheless, what ornithologists know is limited. 
They know mean clutch size for many species 
but mean annual fecundity of breeding females 
for few species. They know the number of fl edg-
lings per successful nest, but not per successful 
breeding female, much less per female of breed-
ing age (Murray 2000b). They know minimum 
age of fi rst breeding but rarely mean age of fi rst 
breeding. They know whether a population is 
single-brooded or multibrooded but not the mean 
number of broods reared, or even attempted 
(Cody 1971, von Haartman 1971, Ricklefs 
1973). They know the maximum life expectancy 
of many species (e.g., Klimkiewicz & Futcher 
1989) but not the mean life expectancy. I hope 
that investigators will begin to calculate values 
for these demographic parameters for different 
species and in different situations.

Even without data, however, the equation 
tells us something about all populations that 
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meet the stated criteria (persisting populations 
fl uctuating between upper and lower bounds 
with long-term r = 0), much as Newtonʼs Laws 
tell us something about the orbits of the billions 
of unknown planets in the universe. Without 
data, we can be sure that two populations of dif-
ferent size also differ in the mean initial size of 
cohorts (number of babies born or eggs laid) or 
mean life expectancy at birth of individuals, or 
both. Differences between persisting populations 
in size cannot be determined by comparing per 
capita birth rate, per capita death rate, clutch or 
litter size, and other population parameters.
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