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Recognition is a prerequisite for non-random association amongst individuals. We 
explore how non-random association patterns (i.e. who spends time with whom) 
affect disease dynamics. We estimated the amount of time individuals spent together 
per month using radio-tracking data from African buffalo and incorporated these data 
into a dynamic social network model. The dynamic nature of the network has a strong 
influence on simulated disease dynamics particularly for diseases with shorter infec-
tious periods. Cluster analyses of the association data demonstrated that buffalo herds 
were not as well defined as previously thought. Associations were more tightly clus-
tered in 2002 than 2003, perhaps due to drier conditions in 2003. As a result, diseases 
may spread faster during drought conditions due to increased population mixing. Asso-
ciation data are often collected but this is the first use of empirical data in a network 
disease model in a wildlife population.

Introduction

Group structure is the hallmark of social spe-
cies. The size and integrity of groups reflects 
their function, which may include vigilance 
against predators, sequestration and protection 
of resources, and alloparenting (for review see 
Dugatkin 1997). Increased susceptibility to dis-
ease is generally believed to be a cost of sociality 

(Alcock 1998). If the movement between groups 
is limited, however, group structure can act to 
contain disease spread. Here we investigate how 
the movement of individuals between groups 
affects disease spread using data on African 
buffalo (Syncerus caffer) and relatively simple 
models of disease processes.

African buffalo exist in a fission-fusion soci-
ety where groups often separate and rejoin (Prins 
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1996, Cross et al. [in press]). The ability to rec-
ognize others is a prerequisite for non-random 
association patterns in fission-fusion societies. In 
this context we do not differentiate between the 
evaluator and cue-bearer in the recognition proc-
ess, but analyze the proportion of time individu-
als spend together and assume that it is a func-
tion of individuals perceiving and acting upon 
the cues expressed by one another (Liebert & 
Starks 2004). We use pair-wise association data 
that we have collected over a two-year period 
in the Kruger National Park, South Africa, to 
characterize buffalo population structure. These 
data are then combined with disease models to 
illustrate how association patterns affect disease 
dynamics. Behavioral researchers often collect 
data on the association between individuals, but 
these data are seldom used in disease models. 

We illustrate the importance of incorporating 
behavioral data in models of disease dynamics, 
and discuss several of the unresolved questions 
which limit our ability to integrate data on recog-
nition and association with disease models.

Models of disease dynamics have become 
increasingly important to understanding and 
managing disease invasion (e.g. Ferguson et al. 
2001, Keeling et al. 2003, Lloyd-Smith et al. 
2003). They reduce the complexity of a system 
and allow for the investigation of specific fac-
tors in ways that would not be possible using 
experimental methods. A tradeoff exists between 
realism and generality of models, however, and 
factors that are omitted for the sake of simplicity 
may play important roles in the real system. Tra-
ditionally, the network of connections between 
individuals has not been included in disease 
models (e.g. Anderson & May 1991). Modelers 
assumed that association was random, i.e. that 
every individual was equally likely to contact 
every other individual. More recent studies sug-
gest, however, that the way individuals contact 
one another (i.e. the network structure and topol-
ogy) plays an important role in determining the 
probability of disease invasion, the total number 
infected, and the speed of disease spread (Keel-
ing 1999, Watts 1999, Newman 2002). Both 
traditional disease models that assume random 
mixing and spatial disease models that assume 
limited dispersal between fixed groups poorly 
characterize some socially structured popula-
tions, such as the African buffalo. Dynamic net-
work models more accurately reflect connections 
within and between groups and the spread of 
disease between associating individuals. In this 
paper, we attempt to narrow the gap between 
the fields of behavior, recognition, and disease 
ecology by illustrating the importance of non-
random association to the spread of disease 
using empirical data from an ongoing study of 
African buffalo and integrating them with simu-
lation models of disease spread.

Social networks have been visualized in a 
number of different ways. Network graphs depict 
individuals as points and their contacts as con-
necting lines (Fig. 1). In the behavioral literature 
of animal association patterns, researchers often 
use cluster analyses, such as Ward’s or UPGMA 
methods, to describe the network (e.g. White-

Fig. 1. Network graphs of the buffalo association data 
for (A) May 2002 and (B) November 2001 through 
October 2003. Balls represent individual buffalo and 
the lines represent all non-zero association values. 
Individuals are distributed vertically according to herd 
membership. Herd membership was determined by 
cluster analysis (e.g. the solid, dotted and dot-dashed 
lines in Fig. 2A refer to the black, grey and light grey, 
balls respectively in panel A).
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head 1999). Underlying these visual techniques 
is a contact or association matrix A where each 
matrix element aij describes the amount or type 
of contact between individuals i and j. Several 
properties of this matrix will affect the overall 
rate of disease spread as well as each individu-
al’s risk of infection. Most obvious are the aver-
age number of connections per individual and 
the strength of those connections. Less obvious, 
and the focus of recent work, is the way that the 
topology of connections (i.e. who is connected to 
whom) affects disease processes (e.g. Anderson 
et al. 1990, Kretzschmar & Morris 1996, Morris 
& Kretzschmar 1997, Boots & Sasaki 1999, 
Keeling 1999, Watts 1999, Kretzschmar 2000, 
Newman 2002, Eames & Keeling 2003, Meyers 
et al. 2003, Read & Keeling 2003).

More traditional disease models assume that 
an individual’s risk of infection depends upon 
the global state of the population. From a net-
work perspective, however, an individual’s risk 
of infection depends on the number of connec-
tions they have and which of those connected 
individuals are infected. Network models of dis-
ease have largely focused on sexually transmit-
ted diseases (STDs), often simulated on static 
networks with uniform connection strengths 
(e.g. Kretzschmar & Morris 1996, Keeling 1999, 
Watts 1999), though recent work has included 
analytic approximations (Ferguson & Garnett 
2000, Bauch & Rand 2001, Eames & Keeling 
2002), exact solutions (Newman 2002), non-sex-
ually transmitted diseases (Meyers et al. 2003), 
an STD network with changing connections 
(Eames & Keeling 2004), and an empirically-
derived urban social network (Eubank et al. 
2004). However, our extension of this network 
approach to cover airborne diseases in animal 
systems, with a network based on empirical data, 
raises two novel issues. Is variance in the con-
nection strengths an important factor? How does 
the dynamic nature of the network affect disease 
spread?

Early attempts to model stochastic disease 
dynamics in networks were probably limited 
by computational power. Current efforts are 
impeded by scarcity of empirical data on the 
structure of human and animal networks and 
the limited communication between behavio-
ral researchers and epidemiologists. In practice, 

several critical issues make it difficult to deter-
mine the network structure of a population: (1) 
contacts may be difficult to define and differ 
between diseases, (2) people are usually bad 
at estimating their contacts while animals are 
often difficult to observe, (3) large populations 
require researchers to choose a sample of indi-
viduals or a small portion of the network and 
then extrapolate, (4) connections between indi-
viduals change over time, and (5) on longer time 
scales individuals enter and leave the network 
due to birth and death processes or migration. All 
of these issues affect our ability to produce an 
unbiased estimate of the network structure and 
none of them are easily solved. For this reason, 
relatively few empirically-based social networks 
exist in the disease ecology literature (but see, 
Woodhouse et al. 1994, Edmunds et al. 1997, 
Wallinga et al. 1999, Liljeros et al. 2001, Jolly 
& Wylie 2002, Eubank et al. 2004). In this study, 
we address issues two and four above, in the 
context of data that we have collected on asso-
ciations among individuals in the African buf-
falo (Syncerus caffer) population in the Kruger 
National Park (KNP) that is in the midst of a 
bovine tuberculosis (BTB) epidemic (Rodwell et 
al. 2000). More importantly, we demonstrate that 
association data collected routinely by behav-
ioral researchers are applicable and valuable to 
studies of disease dynamics.

African buffalo typically occur in breeding 
herds of approximately 30 to 1000 individuals, 
and adult males move between breeding herds 
in bachelor groups of 2–30 individuals. Previ-
ous researchers concluded that buffalo herds 
were relatively stable units, and although herds 
sometimes separated they did not associate with 
neighboring groups (Sinclair 1977, Mloszewski 
1983, Prins 1996). Furthermore, females, sub-
adults, and juveniles were assumed not to move 
between herds (Sinclair 1977, Mloszewski 1983, 
Prins 1996). Recent studies based upon larger 
sample sizes of radio-collared individuals, how-
ever, suggest that females and subadults do move 
between groups and the structure of herds may 
not be stable (Halley 2002, Cross et al. [in 
press]). Radio-tracking data from our study in 
the KNP of over 123 radio-collared individuals 
since November 2000 indicate that herds fre-
quently separate and reunite, and females move 
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to different areas via splinter groups. Further, 
because herd membership changes, the definition 
of a herd becomes more nebulous over time. The 
framework developed in this study presents a 
rigorous definition of a herd based upon associa-
tion data.

In this study, we begin by describing the 
association pattern and network structure of 64 
radio-tracked buffalo from November 2001 to 
October 2003. We then use the association data 
in a stochastic disease model to investigate three 
questions: (1) How does the incorporation of 
non-random association data affect our predic-
tions about the speed and intensity of a disease 
outbreak in the buffalo population in the Kruger 
National Park? (2) Does the variance in the 
frequency of contact between individuals affect 
disease dynamics? (3) How does duration of 
infectiousness affect the degree of population 
structure experienced by the disease process? 
At the moment, we do not have empirical dis-
ease data that we could compare with the model 
predictions, but work on this aspect is ongoing. 
To the authors’ knowledge, this study is the first 
application of a network disease model to a wild-
life population using empirical data to create the 
social network.

Methods

Association data

Field data were collected during an ongo-
ing study in the Satara Region of the Kruger 
National Park. The study area contained 4–12 
buffalo herds, depending upon the amount of 
herd fragmentation, and roughly 3000 buffalo. 
Buffalo were darted from helicopters and fitted 
with radio-collars in four sessions: November 
2000 (N = 6), April 2001 (N = 27), August (N = 
51) and November 2001 (N = 12). To simplify 
the analysis, we restricted the data to sightings 
of 64 radio-collared buffalo that survived from 
November 2001 to October 2003. This restric-
tion allowed for a ‘complete’ dataset where indi-
viduals were present for the duration of the study 
period.

We monitored buffalo herds, on foot and 
from vehicles, approximately 2–3 times per week 

throughout the year from distances ranging from 
50–1000 m. If an individual was missing for 
over one month, we located it from an aircraft. If 
a herd split during the day, only the first sighting 
was used for that day. Since all marked indi-
viduals had radio-collars and herds were usually 
separated by several kilometers, we could deter-
mine which individuals were in a herd without 
visually sighting all individuals.

Following Whitehead and DuFault (1999), 
we considered two individuals to be associat-
ing if they were located in the same herd. This 
one/zero metric of association was used to cal-
culate the proportion of samples in which two 
individuals were seen together (i.e. the simple 
ratio index). Ideally, when using association data 
in disease models the distance cutoff used to 
determine whether two individuals are in the 
same group should depend on how infectivity 
decreases with increasing distance. We assumed 
that buffalo were associating when they were in 
the same herd and the probability of infection 
between a particular susceptible-infected dyad 
was proportional to the time they spent in the 
same herd. This definition implicitly assumes 
that herds are sufficiently well mixed that within-
herd transmission is equal between all dyads and 
sufficiently separated that between-herd trans-
mission is nonexistent. Non-random association, 
however, may also play a role within herds when 
herds are large and diseases are transmitted only 
over very short distances. Unpublished data sug-
gest that buffalo frequently move between the 
front, middle, and back portions of the herd, but 
it remains to be determined whether this is suf-
ficient for our assumption of a well-mixed herd 
to be valid. Recognition and its role in determin-
ing association patterns may be important both 
within and between herds depending upon the 
distance over which individuals are infectious. 
In this study, however, we investigate the role 
of different association patterns at the herd-level 
only.

We constructed association indices between 
all possible dyads using the simple-ratio associa-
tion index calculated from varying windows of 
time. Except where noted otherwise, association 
indices were calculated using monthly data or all 
the data from November 2001 to October 2003. 
Over the 24-month study period, there were 16 
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occasions when a pair of individuals was not 
seen during a month. In these cases, we assumed 
that the individuals were not associating during 
this period. Since this is less than 0.04% of the 
association indices used, this assumption prob-
ably had a negligible effect on our numerical 
simulations. When yearly estimates for 2002 
and 2003 were calculated they were based upon 
data from November 2001 to October 2002 and 
November 2002 to October 2003, respectively, 
to coincide with the onset of the wet season.

We analyzed the association data in three 
ways, independent of the disease model. First 
we constructed dendrograms of the associa-
tion matrices using the unpaired group averag-
ing method (UPGMA), which had the highest 
cophenetic correlation coefficient as compared 
with dendrograms that we constructed using 
Ward’s weighted, complete linkage, and single 
linkage clustering methods (Romesburg 1984). 
Second, we calculated a measure of the network 
clustering using the following metric, proposed 
by Keeling (1999): From the association matrix 
the total number of connected triples (three indi-
viduals sharing at least two connections) is cal-
culated. Some proportion of these triples will be 
closed loops, or triangles, where all three indi-
viduals are connected.

Keeling’s clustering coefficient, f, is the ratio 
of triangles to triples in the network. When f 
equals one then all triples form closed loops and 
one’s neighbor’s neighbor is always one’s own 
neighbor as well. When f is small, individuals 
have few associates in common. We calculated 
f by first converting the association matrix to 
a matrix of zeros and ones where all non-zero 
associations were changed to one. Finally, we 
calculated the percentage of connections between 
individuals that changed from one month to the 
next, where a connection was defined as any 
association index greater than zero. All cluster 
analyses were coded in MATLAB 6.1 (Math-
Works, Inc.).

Disease modelling

The model presented here is a stochastic individ-
ually-based elaboration of a discrete time Suscep-
tible-Infected-Recovered (SIR) epidemic model 

(Anderson & May 1991, Kermack & McKen-
drick 1991), with time-steps of one month. A 
variable xi(t) is used to represent the state of an 
individual i at time t and equals zero when the 
individual is susceptible and one when the indi-
vidual is infected. We assume that the probability 
for the disease to be transmitted between an 
infected individual i and a susceptible individual 
j is a function of the transmission coefficient b 
and the association coefficient aij(t), where aij(t) 
equals the proportion of time individuals i and j 
spent together over the period [t – 1,t]. Addition-
ally, we assume that infected individuals recover 
with constant probability g per time-step and 
do not become susceptible again. Under these 
assumptions, our model takes the form:

, (1)

 , (2)

where T is the length of the simulation in months 
and n is the total number of individuals in the 
population. In all simulations, we calculated aij(t) 
values using the radio-tracking association data 
from the 64 buffalo for which we had a complete 
dataset during the study period. We started each 
simulation with one infected individual. Qualita-
tive results were insensitive to the choice of this 
individual, except for a few individuals who 
were isolated from the others during the initial 
phase of the study period. In most cases, we 
simulated the model for 24 months to match the 
amount of radio-tracking data that was available. 
For those cases where we simulated the model 
for longer periods of time, we used the same 
association data repeatedly. We compared the 
results of this model with a mean-field equivalent 
to highlight the importance of incorporating the 
association data. The mean-field model assumed 
that all individuals were associated according 
to the grand mean of the association matrix for 
that month, so the overall force of infection for 
the mean-field model equaled that of the models 
using association data.

Using the buffalo association data and SIR 
model described above we investigated the 
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impact on disease dynamics of two aspects of 
association patterns: topology (i.e. who is con-
nected to whom) and variation in the frequency 
of connections. Further, we investigated how 
the effects of association patterns depended on 
disease characteristics by varying the transmis-
sion coefficient b and probability of recovery g 
to simulate “fast” versus “slow” diseases, while 
holding the basic reproductive number (R0) 
constant. The basic reproductive number is the 
expected number of infections caused by the first 
case in a completely susceptible population, and 
is a measure of the growth potential of an epi-
demic (Anderson & May 1991).

We investigated the importance of topology 
by randomly rewiring connections in both static 
and dynamic network simulations, using the fol-
lowing algorithm. Let d represent the propor-
tion of network connections that were randomly 
re-assigned, such that d = 0 corresponds to the 
original network structure and d = 1 corresponds 
to a network with all connections randomly 
reassigned. Both the static and dynamic simula-
tions started with the association matrix from 
November 2001. In the static network simula-
tions, a proportion d of the connections were 
rewired at the beginning of the simulation, then 
associations between individuals were assumed 
to be constant over time. In the dynamic network 
simulations, a proportion d of the connections 
were rewired before every time-step.

Next, we investigated the importance of 
variation in connection frequency or strength. 
Previous research on network disease models 
typically assumed that the strengths of con-
nections between individuals are equal (i.e. an 
‘unweighted’ network) and thus the variance of 
connection strengths is zero. The variance in the 
amount of time spent together, however, may 
be biologically meaningful and have important 
consequences for disease dynamics. In dynamic 
networks, connection strength may vary within a 
dyad over time or among dyads. Assuming that 
individuals contact one another with a constant 
probability that is related to their time-averaged 
association index , then the variance in contact 
frequency within the dyad is related to a bino-
mial probability density function and decreases 
as  approaches zero or one. We investigate the 
effects of increasing the variance of the time-

averaged association indices  among dyads, 
which results in lower variance within dyads. 
High variance among dyads would be analogous 
to some individuals having two sets of associ-
ates, those that they spend time with often and 
those that they do not. One might hypothesize 
that weak connections are less significant for dis-
ease transmission, and hence that systems with a 
high variance in connection strength may be less 
permeable to disease spread. On the other hand, 
the disease may spread more rapidly amongst 
those individuals that are tightly associated.

Let At represent the matrix of association 
coefficients aij that is based on data from the 
period [t – 1,t] and Aavg equal the time-average 
of At over the study period. Elements of Aavg 
between (but not including) zero and one indi-
cate that a pair of individuals spent only a por-
tion of the study period together. We introduced 
a parameter a to represent the relative amount 
to increase or decrease the time-averaged con-
nection strength for each pair of individuals. 
For each matrix element  in Aavg, we drew a 
random variable z from a uniform distribution 
between zero and one, and calculated a new ele-
ment  as:

  (3)

Thus, we randomly increased or decreased 
each element of Aavg some proportion a of the 
distance between  and zero or one. Specifi-
cally, when a = 0 the time-averaged connection 
strength has its original value, and when a = 1 
all connections in the time-averaged association 
matrix are either zero or one. Using this algo-
rithm we could increase the variance in time-
averaged connection strengths while maintaining 
the expected mean connection strength. We also 
preserved the topology of connections from the 
original matrix Aavg, except when a equals one 
and some connections were removed entirely. 
We applied this algorithm once to Aavg at the 
beginning of each simulation to create . Then 
for each timestep of the simulation we created an 
association matrix  of zeros or ones, using  
in the altered association matrix  as the prob-
ability that each connection exists.
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Thus we reconstructed an association history 
for the population in which pairs of individu-
als were assumed to be completely associated 
or isolated within time-steps, but the time-aver-
aged association strength for each pair was deter-
mined by . High values of a corresponded to 
increased variance among pairs in time-averaged 
connection strength, but decreased variability in 
the existence of particular connections through 
time. Low values of a, which yielded more inter-
mediate values of  in the altered association 
matrix , corresponded to lower variation 
between pairs but higher temporal variation for 
each pair. Note that this approach is distinct from 
altering the variation in association indices within 
each time-step. To explore the role of variance in 
connection strength, we experimented with dif-
ferent Aavg matrices (e.g. using all data or just the 
data from particular months). All simulations were 
conducted in MATLAB 6.1 (MathWorks, Inc.).

Results

Association data

The time frame used to calculate association 
indices has a large effect on the apparent struc-
ture of the system and thus conclusions about the 
ability of a disease to spread through that system. 
We visualize the network structure using 3-D 
network graphs and dendrograms (Figs. 1 and 
2). The network graph of May 2002 (Fig. 1A) 
indicates two distinct groups and two outlying 
individuals all of whom become well connected 
when considering contacts over the whole period 
from November 2001 to October 2003 (Fig. 
1B). In general, association networks become 
more connected over longer time frames due to 
the movement of individuals between groups, 
thereby allowing diseases to spread among 
groups. Dendrograms illustrate the hierarchy of 

Fig. 2. UPGMA cluster analyses of 64 radio-collared buffalo in the Kruger National Park for different periods of data 
collection: (A) May 2002, (B) November 2001 through October 2002, (C) and November 2002 through October 
2003. Buffalo with higher association indices are linked at lower linkage distances. In panel A the solid, dashed, 
and dot-dashed lines show three distinct herds present in May 2002 (Fig. 1). Panel D compares the overall struc-
ture of the dendrograms by showing the linkage distance required to include a given proportion of nodes (see text).

U
P

G
M

A
 li

nk
ag

e 
di

st
an

ce

A

C

Proportion of nodes
0.0 0.2 0.4 0.6 0.8 1.0

2002
2003
All data
January 2003
May 2002

D

B

Individual

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1



886 Cross et al. • ANN. ZOOL. FENNICI Vol. 41

associations in the buffalo network (Fig. 2). Indi-
viduals that are more often together, similar to 
highly related species on a phylogeny, are joined 
at lower linkage distances on the dendrogram. As 
in the network graphs, dendrograms based upon 
a month of data were generally more tightly 
clustered than those based upon a year of data 
(Fig. 2).

Buffalo appeared more highly clustered in 
2002 than 2003 (cf. Fig. 2B and C). In 2002, three 
groups are apparent, but two of these appeared 
to have merged in 2003. Further, as compared 
with 2002, in 2003 a lower proportion of nodes 
(where two individuals/groups are joined in the 
dendrogram) were included for a given linkage 
distance, indicating looser associations between 
individuals and groups (Fig. 2D). Also, consid-
erable variation exists between months, with 
May 2002 and January 2003 respectively repre-
senting the low and high connectivity extremes 
of monthly association data (Fig. 2A and D). 
Although the network graph for May 2002 (Fig. 
1A) shows only two groups, the dendrogram, 
which accounts for the relative strength of asso-
ciations, appears to show three groups (Fig. 1A). 
Over the entire study period the frequency of 

mixing events between herds resulted in a well-
connected network (Fig. 1B).

Simulation results

To show the effects of the clustering patterns in 
Fig. 2, we simulated SIR disease dynamics ( b = 
0.3, g = 0.1) using monthly association matrices 
from either the entire dataset, one year of data, 
or a mean-field model (Fig. 3). The mean-field 
model where all individuals were connected pre-
dicts much faster spread of disease even though 
the force of infection was the same as the model 
using all the association data (cf. closed circles 
to open circles; Fig. 3). When we used only 
November 2001 through October 2002 (i.e. year 
2002), then repeated the same values to simulate 
months 13 through 24, the disease was limited 
to only one herd and did not infect as many 
individuals as compared with our using the data 
from 2003 (Fig. 3). Thus, the tighter clustering 
of buffalo in 2002 as compared with that in 2003 
(Fig. 2) translated into a population that is less 
permeable to disease invasion. When we used 
the monthly data for the whole period, there 
was a second pulse of infections starting around 
month 14, presumably due to the disease moving 
into a new herd (Fig. 3). Coincident with the 
second pulse of infections was a wet season with 
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below-average rainfall (November 2002 to Feb-
ruary 2003). This also coincided with a marked 
decrease in the clustering of the association data 
in November 2002 as indicated by Keeling’s 
clustering coefficient f (Fig. 4).

Using all the monthly association data we 
simulated two SIR-type diseases with the same 
basic reproductive number (R0 = b/g) but differ-
ent infectious periods. A faster-moving disease, 
with high infectiousness and rapid recovery 
( b = 0.4, g = 0.3), is more likely to fade out in 
populations where the frequency of movement 
between groups is low, because it may burn 
out in the local population before sufficient 
connections to other groups are made (Fig. 5). 
A slower-moving disease with the same R0 ( b 
= 0.04, g = 0.03) is less infectious but persists 
longer, increasing the probability of transmis-
sion to other groups of individuals (Fig. 5). 
Thus, slower diseases effectively integrate over 
a longer period and the network becomes more 
fully connected (Fig. 1).

Next, to assess the impact of the network 
structure on the spread of disease, we analyzed 
the system using only particular months of the 
association data and either randomly rearrang-
ing network connections or increasing the vari-

ance in connection strengths. Random rearrange-
ment (or “rewiring”) of the network connections 
involves establishing a new contact between two 
randomly chosen individuals and removing a 
contact between two other individuals. Random 
rewiring had a non-linear effect upon disease 
dynamics (Fig. 6). Only a small amount of rewir-
ing (d < 0.2) creates a network that behaves like 
a randomly wired network (d = 1.0). Further-
more, because only a small amount of rewiring 
had a large impact, the static simulations (i.e. 
rewiring the matrix once at the beginning of the 
simulation) yielded similar results to the dynamic 
simulations (i.e. cumulative random rewiring of 
the matrix over time), though for very small d 
the dynamic rewiring showed greater effects as 
expected (Fig. 6). Other output variables, such as 
the number of susceptible individuals remaining 
at the end of the simulation, showed results simi-
lar to those in Fig. 6.

To place these random rewiring simulations 
into context, we plot the percentage of the topol-
ogy that remains the same over increasing time 
lags for the monthly empirical data and dynamic 
rewiring simulations (Fig. 7). The percentage of 
similar topology of the empirical data appears 
to be similar to randomly rewiring 10% of the 

Fig. 5. The number of individuals infected as a function 
of the speed of the disease. Slow diseases (dotted line 
and x’s; b = 0.04, g = 0.03) allow for more switching of 
infectious individuals between groups than faster dis-
eases (solid line and +’s; b = 0.4, g = 0.3), and hence 
for greater overall disease spread. Simulations used 
monthly association values from November 2001 to 
October 2003. Symbols show particular model runs, 
and lines represent the mean of 50 runs.
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Fig. 6. The maximum number of individuals infected at 
any point in time after 50 time steps depends upon the 
amount d of random rewiring of the association network 
at the beginning of each simulation (static) or cumula-
tively every time-step (dynamic). Dynamic and static 
simulations started with association data from Novem-
ber 2001; the buffalo system data point was based on 
all of the association data (i.e. unmanipulated). Disease 
parameters were b = 0.3, g = 0.2. Error bars represent 
the standard deviations from 50 stochastic simulations. 
(For clarity, d values of the static simulations were 
increased slightly before plotting.)
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connections (i.e. d ≈ 0.1) in the November 
2001 data (i.e. about 10% of the buffalo net-
work changed per month; Fig. 7). However, for 
reasons we discuss later, the disease dynam-
ics of simulations using d = 0.1 differ greatly 
from those based on the actual association data, 
which yield results more similar to runs with d ≤ 
0.01 runs (Fig. 6).

The variance in the connection strength 
among dyads was only important under cer-
tain circumstances. Using data from September 
2003 and a fast SIR disease (b = 0.3, g = 0.1) 
as an example, Fig. 8 illustrates how the total 
number of individuals infected over the entire 
epidemic was a function of a (a proxy for the 
variance in connection strength; see Methods) 
and the connectivity of the network. We con-
ducted the same analysis as in Fig. 8 for other 
disease characteristics and found that a had 
less effect upon disease dynamics for slower 
diseases (e.g. b = 0.03, g = 0.01). Further, 
a had little effect when we used data from 
months where buffalo herds were either very 
well connected or very weakly connected (data 
not shown). Finally, dropping a certain propor-
tion of network connections had a much larger 
impact than increasing a (Fig. 8).

Discussion

Early work on disease modeling assumed instan-
taneous random mixing between all individuals. 
More recently researchers have begun to account 
for non-random host mixing patterns, often using 
a static network (e.g. Watts 1999, Newman 2003) 
although one recent study incorporated changing 
connections within a background network that is 
static (Eames & Keeling 2004). Pair-formation 
models of sexually transmitted diseases include 
dynamic contacts but usually not the fully non-
random mixing of network structure (Dietz & 
Hadeler 1988, Kretzschmar & Morris 1996, 
Morris & Kretzschmar 1997, Lloyd-Smith et al. 
2004). To the authors’ knowledge, empirically-
derived, fully dynamic contact networks have 
not been used as a substrate for investigating dis-
ease dynamics, but see Corner et al. (2003) for 
an example of a more experimental approach to 
social networks in a wildlife disease system. Our 
analysis shows how disease dynamics depend on 
the topology of connections between individuals, 
the dynamic nature of these connections, and the 
variance in the frequency of contacts between 
individuals. Association data similar to those 
presented here are often collected by behavio-
ral researchers (e.g. Myers 1983, Smolker et 
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al. 1992, Brager et al. 1994, Whitehead 1999, 
Szykman et al. 2001), but have not been com-
bined with models of disease dynamics even 
though they may have important impacts upon 
the spread of disease (Fig. 3).

Analysis of the association data suggests that 
the buffalo population was more tightly clustered 
in 2002, but with more connections between 
groups in 2003 (Fig. 2). From the perspective of 
a disease, this translates into a more permeable 
population in 2003 (Fig. 3). More specifically, 
many buffalo were moving to new areas and 
groups in November 2002, which resulted in a 
less tightly clustered population at the same time 
when rainfall was well below average (Fig. 4). 
Rainfall totals for November 2002 through Janu-
ary 2003 were only 34% of the long-term aver-
age for those months. Results from the model 
then present a testable prediction that dry condi-
tions facilitate more rapid spatial spread of dis-
ease in the buffalo population due to increased 
herd-switching.

This presents a worrying scenario for south-
ern Africa, where precipitation is predicted to 
remain stable or decline while temperatures are 
likely to increase due to global climate change 
(Hulme et al. 2001). As a result, vegetation con-
ditions are likely to decline, which may result in 
an increase in the amount of population mixing 
as wildlife is forced out of previously habitable 
areas. Many studies have linked climate change 
with altered disease distributions or dynamics 
(e.g. Epstein 2002, Patz & Khaliq 2002). How-
ever, evidence for the impact of climate change 
on animal behavior, which in turn affects disease 
dynamics, is rare.

Previous studies of African buffalo have sug-
gested that herds are relatively static (Sinclair 
1977, Prins 1996). We show, however, that buf-
falo herds are very dynamic in the KNP and 
that over time the population becomes well-con-
nected (Fig. 1). As a result, over time it becomes 
difficult to define what is a herd. As suggested 
by a reviewer, we propose a definition of a herd 
based upon the association data, such that a 
herd is defined as the set of maximal complete 
subgraphs of the network where all individuals, 
or vertices, are associated with aij greater than 
some threshold (for a particular time period). 
Here a complete subgraph is defined as a subset 

of the vertices of the network such that for every 
pair of vertices in the subset, there is an edge 
connecting them and the set of those edges and 
vertices are a complete network and a subset of 
the original network. We will explore the impli-
cations of this definition for our buffalo data in a 
future publication.

In considering effects of association patterns 
on disease, one issue of critical importance is 
accounting for the relative time scales of the dis-
ease and host mixing patterns. This interplay has 
important implications for the spread of disease, 
the way association data should be collected, and 
the evolution of both host and parasite. Fast dis-
eases, such as rabies, measles, and Ebola hemor-
rhagic fever, with a short duration of infectivity 
encounter a more structured population because 
the amount of mixing between groups decreases 
as the time frame decreases (Figs. 2D and 5). 
Thus, association data should have higher time 
resolution if they are intended to give insight 
into the spread of diseases with fast dynamics. 
More specifically, association data should be 
collected at least as frequently as the duration of 
infection for the disease of interest, to capture 
population mixing on timescales relevant to the 
disease. Furthermore, association data should 
not be averaged over too long a period. If asso-
ciation matrices are constructed using data from 
a time frame longer than the duration of infec-
tion within an individual, then the network is 
biased in favor of too many connections between 
individuals. As an extreme example compare the 
connectivity of the networks based upon one or 
24 months of data (Fig. 1).

Similar to Watts’s (1999) work on static 
networks we found that only a small amount 
of random rewiring is necessary to make the 
empirical buffalo network behave as a randomly 
wired network. Further, there was little differ-
ence between rewiring the network once at the 
beginning of the simulation or once each time-
step (Fig. 6). This is probably due to limited 
number of groups in the network. Only a small 
number of connections are necessary to make it 
a ‘small-world’ graph where there are very few 
degrees of separation between any two individu-
als and additional changes to the network have 
little additional impact (Fig. 6). Interestingly, the 
model predicts that fewer individuals would be 
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infected when using empirical association data 
as compared with the simulated data that approx-
imates the amount of change in the association 
matrix (d ≈ 0.1) seen in the empirical dataset 
(Fig. 6). This suggests that although the empiri-
cal network is changing every time step, these 
changes are not random and a proportion of the 
population remains inaccessible to the disease 
(Fig. 6). Thus the population is less permeable to 
disease invasion than one would expect if move-
ment of individuals between groups was random. 
This amount of movement is higher than what 
might have been expected from previous studies 
of African buffalo (Sinclair 1977, Prins 1996), 
however, given the intensive radio-tracking con-
ducted in this study probably more accurately 
describes the fluid structure of the population in 
the KNP (Cross et al. [in press]).

Somewhat surprisingly, we found that 
increasing the variance in connection strength 
among dyads had only minor effects upon disease 
dynamics in this system (Fig. 8). This suggests 
that for the range of networks we investigated, 
disease dynamics are very similar in a system 
where individuals spend their time equally with 
all associates or spend a large portion of their 
time with only a few individuals and a little time 
with many others. This conclusion, however, 
may be limited to well-connected networks with 
a limited number of groups. Further, we did not 
investigate the effects of increasing the variation 
in contact frequency within a pair of individuals. 
More work is necessary to determine the general-
ity of these results and in what contexts networks 
of weighted connections behave differently than 
unweighted networks.

Future directions

Despite the known importance of association 
patterns to disease dynamics, empirical data are 
lacking, especially for airborne diseases. First of 
all, disease ecology is a relatively new field, and 
although a number of studies have investigated 
how association patterns may affect disease 
dynamics (e.g. Keeling 1999, Eames & Keel-
ing 2003, Boots et al. 2004), few studies have 
attempted to integrate empirical data and disease 
models. Secondly, an accurate depiction of a 

social network is very difficult to generate. We 
believe that future research should focus on the 
following questions, which currently limit our 
ability to apply empirical data to disease models: 
(1) What defines a contact for airborne diseases? 
(2) What are the appropriate time and spatial 
scales to sample a network of animals? (3) How 
does one scale-up a sample of a network to 
represent an entire population? (4) Given that 
population dynamics are an important factor in 
disease dynamics, how does one allow for births, 
deaths and changes of association patterns while 
maintaining the overall properties of a network? 
Studies on the tradeoffs faced by individuals in 
social systems with regard to disease and behav-
ior could also be enlightening (e.g. Adamo et al. 
2001, Boots & Knell 2002). In particular, indi-
viduals may modify their behavior to decrease 
their contact with others when they are at higher 
disease risk. If empirical data were available, 
they could be incorporated into the network 
model framework by adjusting the association 
indices between infectious and susceptible indi-
viduals.

In conclusion, the way that individuals asso-
ciate with one another has a large effect upon the 
spread and dynamics of a disease. Although there 
are a few questions that need to be answered 
before empirically-derived social networks can 
be widely applied, the methods presented here 
provide a flexible framework for combining 
behavioral data with models of disease dynam-
ics. Finally, our results suggest that a critical 
interplay exists between the time scales over 
which social interactions take place and those 
associated with a particular disease. An assess-
ment of how likely it is that a given disease 
become an epidemic requires that we pay atten-
tion to social interaction and disease time scales, 
which then determines the appropriate temporal 
resolution for the collection of data determining 
the structure of social networks.
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