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Two key life history attributes are temporal reproductive patterns and inter- and 
intraspecific variation in clutch size. In this work, we collected individuals of 
Physalaemus gracilis in Espinas stream (Maldonado, Uruguay) to analyze the cor-
relation of activity with environmental variables and to evaluate the influence of 
reproductive investment on the body size-fecundity (BSF) relationship. In contrast 
to previous reports, the reproductive activity peaked in spring and was not correlated 
with temperature or rainfall in either sex. Regression analysis showed that the BSF 
relationship varied with size, and that larger females had a steeper slope than smaller 
females. Reproductive investment data indicate that smaller females invested less 
energy in their offspring than larger females, which is probably due to the imposed 
cost of continued growth.

Introduction

The reproductive strategies of anurans are opti-
mal combinations of morphological, physi-
ological, behavioral, and life history traits that 
maximize reproductive success under particu-
lar environmental and evolutionary constraints 
(Duellman & Trueb 1994). Two key life history 
attributes related to reproductive strategies are 
seasonal reproductive patterns and inter- and 
intraspecific variation in clutch size (e.g., Salthe 

& Duellman 1973, Crump 1974, Kuramoto 
1978, Wake 1982). Whereas a bulk of data have 
accumulated on life history of frogs from tem-
perate areas in the northern hemisphere, a similar 
knowledge for frogs in tropical and temperate 
regions of South America is far behind (see Don-
nelly et al. 2005).

The temporal reproductive pattern of 
anurans is continuous in tropical non-seasonal 
climates, and seasonally cyclic in tropical and 
temperate regions that have a marked dry or 
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cold season (Duellman 1978, Jørgensen 1992). 
In temperate regions, the seasonal increase in 
temperature plays a permissive role in the acti-
vation of gonads, and regulates the duration 
of the breeding season, whereas rainfall often 
triggers the onset of the breeding season (Steb-
bins & Cohen 1995). While these general pat-
terns hold for the majority of anuran species 
in temperate regions, variation in other factors 
(e.g., internal rhythms) can cause some species 
to reproduce for longer or shorter periods than 
expected (Wells 1977, Brown & Shine 2002, 
Morrison & Hero 2003).

Regarding intraspecific variation in the body 
size–fecundity (BSF) relationship, most stud-
ies report a significant and strong correlation 
between body size and clutch size (Tejedo 1992, 
Gilbert et al. 1994, Kusano & Hayashi 2002, 
Wogel et al. 2002). However, other studies have 
not found such a consistent pattern, at least for 
some species (e.g., Duellman & Crump 1974, 
Elmberg 1991, Tarkhnishvili 1993, Buschmann 
2002, Tsiora & Kyriakopoulou-Sklavounou 
2002). One hypothesis for these contradictory 
results is that females vary in the amount of 
energy allocated for different activities (repro-
ductive or otherwise). This may constrain clutch 
size and, consequently, affect the BSF relation-
ship (Duellman & Trueb 1994). In this sense, 
Bonnet et al. (2003) found that fecundity cor-
relates well with body size in high reproduc-
tive investment (RI) females. However, when 
females with increasingly lower RI are included 
in the analysis the strength of the BSF relation-
ship weakens.

Herein, we investigated seasonal variation 
in the activity of male and female Physalaemus 
gracilis in a population from southern Uruguay. 
We chose P. gracilis as the focal species because 
it is one of the most abundant frogs in southern 
Uruguay (Nuñez et al. 2004). In addition, this 
leptodactylid frog inhabits both undisturbed as 
well as urbanized areas, where foam nests are 
placed among the aquatic vegetation in shal-
low swamps and flooded areas (Langone 1995, 
Maneyro et al. 1995, Achaval & Olmos 2003). 
Previous reports indicate that the seasonal breed-
ing activity of P. gracilis occurs after heavy 
rains from September to March (Langone 1995, 
Achaval & Olmos 2003).

Materials and methods

Study site and specimen collection

We collected P. gracilis along Espinas stream 
(34°47´S, 55°22´W, Departamento de Maldo-
nado, Uruguay) between September 1998 and 
April 2000. The 2-km-long Espinas stream is 
dammed before flowing into the La Plata River 
and becoming a shallow, lentic area at sea level. 
Frogs were collected monthly in pitfall traps 
placed at about two meters from the stream 
border and remaining operative during the entire 
study period. Specimens were deposited in the 
Vertebrate Zoology Collection, Facultad de 
Ciencias, Universidad de la República (ZVCB). 
For all specimens we measured total snout-vent 
length (SVL) using a 0.005 cm precision digital 
caliper.

Patterns of activity

Activity patterns were described by considering 
monthly variation in the number of captures and 
body sizes. The period of reproductive activ-
ity of females was determined from the pres-
ence of gravid females with mature ovaries con-
taining fully developed oocytes. The period of 
male reproductive activity was estimated during 
fieldtrips (see below), using the relative abun-
dance of calling males based on the follow-
ing ranking: (1) occasional: one male, (2) rare: 
two males, (3) common: three or more distin-
guishable males, and (4) chorus: many countless 
calling males (Moulton et al. 1996, Shirose et 
al. 1997, Driscoll 1998). Fieldtrips were con-
ducted each month (except for February 1999 
and December 1999) for two consecutive nights, 
between sunset and 01:00. The relative abun-
dance of calling males was recorded at seven 
sites. For each month, we summed ranks over 
all sites to obtain an estimate of male abundance 
across the study area. Correlation between the 
reproductive activity of males and females was 
estimated using non-parametric Spearman’s rank 
test (Zar 1999). In addition, we obtained mean 
monthly records of temperature and accumulated 
rainfall from the Carrasco International Airport 
Weather Station, which is at sea level and near 
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to the coast (60 km west of the study site). We 
calculated non-parametric Spearman’s rank cor-
relations between each climatic variable and the 
reproductive activity of each sex.

Body size–fecundity relationships and 
reproductive investment

The mature ovaries with post-vitellogenic 
oocytes were extracted from all gravid females, 
and the total mass of ovaries was measured with 
a digital balance with 0.01 g precision. Subse-
quently, ovisacs were removed to release mature 
oocytes and their total number (i.e. fecundity) 
was directly quantified for each ovary. The BSF 
relationship was evaluated through regression 

analysis, testing both linear and exponential 
models. In addition, we fit a pair-wise regression 
to analyse the potential existence of a breakpoint 
in the BSF function. Reproductive investment 
of each individual was estimated as the ratio 
between ovary mass and SVL.

Results

Patterns of activity

A total of 275 specimens were collected during the 
study period. Peaks in capture number occurred 
during the warm months (October–February) of 
each year. The body size distribution had two 
peaks, with modal values of 1.60 and 2.90 cm (Fig. 

Fig. 1. (a) Snout-vent 
length (SVL) distribution 
of P. gracilis specimens 
collected in the study 
area between September 
1998 and April 2000, and 
(b) monthly variation in 
snout-vent length (SVL). 
Dots represent mean 
values, vertical bars are 
standard errors, and num-
bers above bars indicate 
sample sizes.
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1a). Since the minimum SVL for a gravid female 
(2.46 cm) corresponds to the valley of this bimo-
dal distribution, peaks probably represent adult 
and juvenile individuals. The monthly variation in 
mean SVL indicates that adults and juveniles did 
not necessarily occur in the study site at the same 
time. Adult individuals appeared first (October–
December) and then the juveniles arrived abruptly 
(December–January), causing a marked drop in 
mean SVL during both years (Fig. 1b).

The reproductive activity of both sexes was 
highly correlated (rs = 0.77, n = 17, P < 0.001) 
due to the synchronous presence of calling males 
and gravid females in October and November 
of both years (Fig. 2a). However, male activ-

ity started earlier than female activity, which 
was characterized by a sudden occurrence and 
disappearance of gravid females in the study 
area. Although the number of gravid females 
in November 1998 (n = 8) was lower than in 
November 1999 (n = 32), the proportion was 
very similar (62% and 55%) in relation to the 
total number of captures during these months (n 
= 13 and 58, respectively).

Neither monthly variation in temperature nor 
rainfall was correlated with female activity (tem-
perature: rs = 0.28, n = 19, P = 0.25; rainfall: rs = 
–0.41, n = 19, P = 0.08; Fig. 2b) or male activity 
(temperature: rs = – 0.02, n = 18, P = 0.95; rain-
fall: rs = –0.06, n = 18, P = 0.83; Fig. 2b). Repro-
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Fig. 2. Monthly variation 
in activity of P. gracilis and 
climatic variables in the 
study area. (a) Accumu-
lated rank abundance of 
calling males and absolute 
number of gravid females 
and (b) monthly mean 
temperature and accumu-
lated rainfall.
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ductive activity was not correlated with changes 
in temperature or rainfall that occurred in the 
previous month for either sex, but we did observe 
significant associations with the temperature one 
month in advance (rs = 0.62, n = 18, P < 0.01 for 
females; rs = 0.52, n = 17, P < 0.05 for males).

Reproductive investment and body size–
fecundity relationships

A total of 64 gravid females were collected 
and analysed. A significant correlation between 
fecundity and SVL was found, and both the 

linear (r = 0.60, F1,62 = 35.43, P < 0.001) and 
the exponential (r = 0.61, F1,62 = 5.93, P < 
0.001) model, had a similar fit to the data. Pair-
wise regression explained 72.4% of the total 
variance (nearly twice the variance explained 
for the above mentioned models), and suggests 
the existence of a breakpoint in SVL at 2.98 cm 
(Fig. 3). Females with larger SVL had a steeper 
slope (b = 360.3, SE = 137.0, n = 30) than 
smaller females (b = 206.6, SE = 78.1, n = 34). 
RI reached a mean value of 0.10 (SE = 0.006), 
ranging from 0.02–0.23 g cm–1. In addition, 
the RI frequency distribution showed that most 
females presented lower than average RI values, 
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with a long tail of few females showing very 
high RI (Fig. 4).

Discussion

Activity patterns

Annual and seasonal variation in species activ-
ity has profound implications on ecology, from 
the organism level (e.g., Jørgensen 1992) to the 
community level (e.g., Schoener 1974, Sandvik 
et al. 2002). Activity periods govern the length of 
the breeding season and also influence the timing 
of reproductive bouts and the number of clutches 
produced in a season (Bull & Shine 1979). In 
addition, the type of male competition for mates 
and female mating preferences greatly depend on 
the temporal pattern of reproduction and opera-
tional sex ratios (Eggert & Guyétant 2003).

Results obtained in the present work indicate 
that P. gracilis activity peaks were restricted 
to two or three months during the warm season 
(spring and summer). In both years, the presence 
of gravid females and male calling activities 
peaked from October to November (or Decem-
ber), and subsequently, a marked decline in mean 
body size occurred when juveniles dominated 
the captures. A similar pattern of body size vari-
ation was found in P. cf. fuscomaculatus and is 
interpreted as the recruitment of new individuals 
emerging from the last breeding season (Giaretta 
& Menin 2004).

The phenology of P. gracilis in Uruguay cor-
responds to that of an early breeder, with a pattern 
that is characteristic of prolonged reproduction 
(sensu Wells 1977). The early arrival of males to 
form large aggregations and the emission of calls 
different from the specific advertisement call 
(A. Camargo pers. obs.) suggest that P. gracilis 
males spend considerable time in chorus forma-
tion. Prolonged breeders, in contrast to explosive 
breeders, reproduce in permanent sites, where 
males tend to form lek-like, spatially structured 
choruses and call antiphonally to minimize male-
to-male interaction (Stebbins & Cohen 1995). In 
this sense, intensive social interactions, including 
male competition and female mate selection, have 
been reported for other Physalaemus species (e.g., 
P. cuvieri Barreto & Andrade 1995, P. pustulosus 

Bosch et al. 2000, P. signifer Wogel et al. 2002, 
P. enesefae Tárano & Herrera 2003). Neverthe-
less, our results contrast with previous accounts 
of the phenology of P. gracilis in Uruguay, where 
a more extended breeding period was reported 
(Langone 1995, Achaval & Olmos 2003). These 
discrepancies may reflect the fact that the period 
of calling activities does not strictly coincide with 
breeding periods, at least in typical prolonged 
breeders. The fact that P. gracilis males start to 
call earlier than the actual beginning of reproduc-
tive activities (i.e., when mature females appear) 
could overestimate the duration of the breeding 
season. As mentioned above, prior to the onset 
of breeding activities, calling may play a role in 
chorus formation rather than in attracting mates 
(Wiest 1982, Bastos & Haddad 1996). In these 
cases, calls by males in full reproductive potential 
may promote the endocrinal activation of other 
males to incite them into calling activity (Chu & 
Wilczynski 2001), thus increasing the chorus size 
as well as its attractiveness for females (Lucas & 
Howard 1995).

Regarding climatic variables, although repro-
ductive activity patterns and temperature showed 
cyclical variation throughout the year, there was 
no significant correlation because most activity 
occurred in spring months and decreased during 
the warmer summer months. We also did not 
observe a correlation between reproductive activ-
ity and rainfall, which is probably due to the fact 
that rainfall was marked lower in the second year. 
Taken together these results suggest that nei-
ther temperature nor rainfall exclusively control 
the breeding patterns of P. gracilis in Uruguay. 
Moreover, the correlation of activity in both sexes 
with future changes in temperature suggests that 
internal mechanisms may have been involved in 
shaping similar activity patterns during the two 
consecutive seasons. The contribution of internal 
rhythms may be relevant considering their dem-
onstrated role in alternatively inducing and inhib-
iting the gonadal activity of bufonid, ranid, and 
leptodactylid frogs (Jørgensen 1988, Mosconi 
et al. 1996, Tsai et al. 2003). Alternatively, the 
restriction of activity mainly to spring months 
may reflect an adaptation to avoid reproduction 
during summer months, when presumably higher 
evaporation occurs. As a pond dries up, increased 
crowding between amphibian larvae may result 
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in increased competition, growth inhibition, and 
cannibalism (Griffiths 1997). The study of the 
reproductive cycles of P. gracilis at lower and 
higher latitudes may provide insight into this 
apparent preference to reproduce at mild tem-
peratures.

Body size, fecundity and reproductive 
investments

How to partition a finite amount of energy into 
maintenance, growth and reproduction is one of 
the major concerns of life history theory, and, 
thus, a very important issue in evolutionary biol-
ogy. Life history theory predicts that reproduc-
tion costs in a given year has profound effects 
on subsequent performance, via changing repro-
duction and survival in subsequent years (Roff 
1992, Stearns 1992). In ectothermic animals, 
growth rates decrease greatly after individuals 
reach sexual maturity (Halliday & Verrell 1988, 
Hemelaar 1988). Thus, for these species growth 
may be considered an investment in future repro-
duction since large females frequently produce 
more young than small females (Lardner & 
Loman 2003, and references therein). In addi-
tion, a reduction in growth due to reproduction 
costs could increase the probability of death by 
keeping the organism within a size range that is 
preferred by predators (Roff 1992).

The BSF relationship of P. gracilis, shows 
that a two slopes function explains much more of 
the total variance than a linear or an exponential 
model. One possible explanation for this is that 
pair-wise regression allows the separation of 
females that reproduce for the first time (and yet 
have great energy investment in growth) from 
those females that entered into the reproduc-
tive pool at least one year earlier. Reproduc-
tive investment data support this idea: of the 
34 females in the low SVL group, 27 showed 
RI values lower than the mean, whereas of 
the 30 females in the high SVL group only 12 
showed RI values lower than the mean. Thus, 
in small females advantages related to contin-
ued growth may impose an important limitation 
on the amount of energy that can be allocated 
to reproduction. In contrast, for larger females 
other more variable factors, such as food supply, 

competition or predation, may limit the amount 
of energy devoted to each reproductive event. In 
many amphibian species, fecundity is a plastic 
trait that can change with environmental con-
ditions, among populations, among individuals 
within populations, and also among years within 
single individuals (Kaplan & King 1997, Morri-
son & Hero 2003, and references therein).

Finally, Bonnet et al. (2003) argued that 
studies based on hand-collected samples may 
overestimate the strength of the BSF relationship 
because low RI females are frequently discarded 
in the field as non-gravid females. It is possible 
that pitfall trapping outperforms the by-hand 
method in obtaining a representative sample of 
reproductively active P. gracilis females. How-
ever, pitfall traps may also undersample females 
with very high RI because they move less or stay 
hidden more often than other females (Bonnet 
et al. 2003, Shine 2003, and references therein). 
Thus, we suggest that a combination of manual 
collection and pitfall trapping may be more 
appropriate for assessing variation in the repro-
ductive parameters of a given frog population.
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