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This communication provides an illustration for the use of computer simulations in 
human immunology. When traditional experiments are impossible, unethical, or unfea-
sible, in silico modeling procedures may help to fill the gaps in our knowledge of an 
immune system response to a pathogen. In our study, we define terms and properties of 
modeled entities: “a clonotype”, its distribution, and rank-frequency summaries, and 
describe properties associated with each of these three clonotype-related entities. We 
simulate a multistage dynamic process of an immune memory response to influenza. 
We believe that illustrated properties of fractality and self-similarity might arise due to 
the following process. The memory T cells operate in a complex environment of shift-
ing pathogen concentrations, increasing and then decreasing inflammatory signals, and 
multiple interactions with other immune cells and their infected targets. Therefore, a 
fractal structure to such a population would represent an optimization in terms of per-
colation into immune/inflammatory space.

Introduction

The immune system is an example of a complex 
system with multiple layers of interacting cells 
and molecules all aimed at identification and 
elimination of pathogens while avoiding col-
lateral damage to self. As a first approximation 
the immune system can be divided into two 
levels, the first recognizes signs of destruction 
of the host and of pathogen invasion. This innate 
level of immune responsiveness has evolved 
over longer periods of time and is genetically 

hard wired. It includes effector functions such as 
phagocytosis and the various aspects of inflam-
mation. The second level acts during the life 
time of its host and involves adaptive changes 
by cells of the immune system to possible patho-
gens encountered. While starting at the level of 
recognition of rapidly changing pathogen sig-
natures the adaptive level has taken on more 
complex roles and functions. The hallmark of 
this layer is the use of multi-gene families which 
can alter their expression on the basis of a learn-
ing process. Most impressive is the harnessing 
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of genomic chaos in the form of gene rear-
rangements and somatic mutation for generating 
novel receptors on a clonal basis. This level of 
the immune system can be considered a real 
time example of natural selection with the gen-
eration of diversity followed by selection. The 
adaptive level recognizes finer characteristics 
of pathogens and its effector arm is more highly 
tailored to their specific elimination, decreas-
ing the requirement for inflammatory processes 
associated with innate function. Inherent in this 
latter process is the ability to recognize a second 
occurrence of the same pathogen with a strong 
specific response. This is called immune memory 
and is the basis for vaccination (Ahmed & Gray 
1996).

In spite of the importance of memory, it 
is still poorly understood in either man or the 
most commonly used immune animal model, the 
mouse. While many basic issues of the induc-
tion of memory can be established in the mouse, 
of most practical interest is the understanding 
of memory in man. Memory in man has differ-
ent requirement from that of mouse in terms of 
the longevity, complexity of pathogen expo-
sure, and migration/travel of humans resulting 
in novel pathogen exposure. Thus, some aspects 
of immune memory can only be studied in man. 
The analysis of immune responses in man is dif-
ficult. It has already been shown in mouse stud-
ies that the history of exposure to pathogens set 
up differences in the memory repertoire (Selin 
et al.1999). In humans, the exposure history is 
unknown. Samples are only available from the 
blood and not from other secondary lymphoid 
organs. Thus, many lines of experimentation that 
are possible in mice are impossible, unethical, 
or unfeasible in man. One of the purposes of 
computer simulations or in silico modeling is to 
fill the gaps in our knowledge by gathering simu-
lated observations.

Simulations can be launched in order to 
understand how a system may take shape. In 
silico modeling can be used to provide possible 
histories of how a system may evolve to a par-
ticular stage for which in vitro or in vivo obser-
vation exist. They can be used for forecasting or 
prediction on how a system may change under 
various stressors. The results of simulated exper-
iment may trigger new questions or hypotheses 

and provide insights into the nature of a process 
under investigation. The largest benefit would 
be to provide a basis for predictions that can be 
tested at the bench.

Our recent observation of a fractal self-simi-
lar structure in memory repertoires (Naumov 
et al. 2003) analyzed in vitro motivated us to 
explore simulation studies that can provide a 
better understanding of the multistage dynamic 
process of an immune memory response to a 
pathogen. In this communication we describe 
the in silico modeling procedure that imitates the 
development of immune response to influenza 
peptide. We start the modeling procedure with 
defining terms and properties of the modeled 
entities. We define the smallest observable unit 
used for modeling and analysis, “a clonotype”, 
clonotype distributions, rank-frequency sum-
maries of clonotype distributions, and describe 
properties associated with each of these three 
clonotype-related entities. We develop a con-
ceptual framework for modeling and provide 
an illustration of simulation in simplifying con-
ditions. The results of simulation are visual-
ized using a polygonal spiral. The similarities 
between simulated and actual distributions are 
assessed. The insights gained from simulations 
are discussed. All simulations and analyses were 
performed using S-plus statistical software.

Working definitions and properties

At first, we define “a clonotype”, the smallest 
observable unit used for modeling and analysis, 
and three clonotype-related entities: clonotype 
repertoire, distribution, and rank-frequency sum-
mary, which are the products of aggregating 
clonotype-specific information at various levels. 
Most of the properties of clonotypes are rela-
tively invariant to experimental conditions and 
can be directly measured, as can some of the 
properties of the repertoire. We postulate that 
each of these three entities can be character-
ized by its diversity. Diversity is a property of a 
TCR repertoire that reflects repertoire variability 
and can be measured at different levels includ-
ing CDR3 amino acid sequences and clonotype 
distribution. Diversity is one of the properties 
of a clonotype distribution and is associated 
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with variety in rearrangement and multiplicity of 
selective re-assortment.

Clonotype, clonotypic lineage, clonotype 
properties

The T cell receptor (TCR) is composed of two 
protein chains. The genes for these proteins are 
generated by a rearrangement process joining 
two or three DNA segments; the variable seg-
ment (V) rearranges next to the joining segment 
(J) in the case of the α chain, and a V to diversity 
segment (D) to J segment rearrangement for the 
β chain (Davis & Chien 2001). The rearrange-
ment process results in a random insertion/dele-
tion of genetic information at the joining sites. 
The joining region will encode the part of the 
receptor that contacts the antigen (Fig. 1) and is 
referred to as the third complementarity deter-
mining region (CDR3) of the TCR. Therefore, 
the TCR is predefined by the use of a particular 
V and J region combined with the pseudo-
random DNA sequence of the CDR3 (Fig. 2). As 
a general rule each functional T cell leaving the 
thymus expresses a single TCR, i.e. the receptor 
is clonal. The CDR3 sequence of a T cell defines 
its clonotype. In the context of recognition of an 
antigen fragment the term clonotype can refer 
to the amino acid sequence of the CDR3. How-
ever, we will use the more restricted definition 
of clonotype as the nucleotide sequence of the 
CDR3. On a molecular level almost all T cells 
express only one copy of the β chain and for 
this reason we will be generating β-chain CDR3 
sequences.

After a T cell bearing a particular clonotype 
is generated, it leaves the thymus and circu-
lates through the blood and peripheral immune 
organs. It has a restricted lifetime in which to 
encounter the antigen for which its TCR has 
sufficient avidity of recognition. In the absence 
of antigen stimulation the clonotype will die 
out. In the presence of stimulation the clonotype 
will expand and define a lineage of cells all 
derived from the original clonotype precursor. 
However, it should be pointed out that this is an 
approximation as the exact number of precur-
sors derived from a cell which has undergone a 
unique rearrangement is unknown. There is evi-

dence for limited expansion of the original cell 
that rearranged its receptor prior to thymic exit 
(Correia-Neves et al. 2001). It is also unclear 
at which rate two identical clonotype sequences 
may arise during the rearrangement process. For 
example, rearrangements that encode the CDR3 
amino acid sequence “IRSS” and that utilize the 
entire BV17 gene, which encodes the “I”, and 
the entire BJ2.7 segment which encodes the final 
“S”, can arise in 36 different ways that RS can 
be encoded. If such rearrangements occur more 
frequently than 36 times there will have to be 
more than one copy of an identical clonotype 
generated in the thymus. If the rearrangement 
is random then it will follow a Poisson distribu-
tion in which some of the clonotypes will appear 
two or three times before all the possibilities are 
filled. The rate at which identical clonotypes are 
generated de novo is a function of the length of 
the CDR3 with longer sequences decreasing the 

Fig. 1. Illustration of the T cell receptor with clonotype 
defining region. The αβ-T cell receptor heterodimer 
(in blue) is generated by a rearrangement process 
that results in a random section of genetic information 
inserted in the position that will encode the part of the 
β chain (magenta) that contacts the antigen-derived 
peptide (green spheres). This random piece of genetic 
material can be identified and all T cells with the same 
random piece of DNA counted. They are all assumed 
to be related, and the number reflects the expansion 
of that T cell. This random genetic segment (magenta) 
defines the clonotype, the primary unit of investigation.
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probability that this portion of the TCR could 
have arisen by independent events.

In addition to the unique DNA sequence in 
the CDR3, definable clonotype properties include 
the V, D, and J segments used, the length of the 
CDR3, the amino acid sequence encoded by the 
CDR3, and its avidity/affinity for any particular 
antigen complex. An antigen complex is usually 
a peptide fragment derived from the pathogen 
that is bound in the peptide binding groove of a 
molecule of the major histocompatibility locus 
(MHC).

Repertoires: naïve, responding, memory, 
diverse, and restricted

We define a T cell repertoire as the set of unique 
clonotypes. A naïve repertoire is an ensemble of 
clonotypes that have recently exited the thymus 
and have not yet encountered an antigen com-
plex of sufficient avidity to induce stimulation. 
All the clonotypes involved in a response to a 
particular antigen complex define the respond-
ing repertoire. A memory repertoire is a subset 
of clonotypes previously selected by an anti-
gen. A repertoire can be considered restricted 
if there are easily observed restrictions in some 
of its properties. For example all the responding 
clonotypes utilize a particular V gene, and/or a 
particular CDR amino acid sequence.

Specifically, a repertoire is a set of unique 
CDR3 sequences, C = {C1,C2,…,Ci,…,CN} where 
Ci is a unique clonotype, and N is a number of 
unique clonotypes with some pre-selected prop-
erties. A null set would indicate no measurable 
response. The simplest measure of repertoire 
diversity is the number of sequences observed 
in a measurement or clonotypes expected in the 
repertoire.

Clonotype distributions

The concept of clonotype distribution incorpo-
rates the number of times any particular clonotype 
is observed. A clonotype distribution described as 
a repertoire, C = {C1,C2,C3,…,CN}, with each 
clonotype being observed a number of times V = 
{VC1,VC2,VC3,…,VCN}, so M = ∑V, where M is a 
number of sequences. Typically, when counts are 
sorted in descending order, a clonotype distribu-
tion has a long tail that consists of singletons, or 
clonotypes presented by only one copy (Fig. 3).

The shape of the clonotype distribution pre-
sented in such manner reflects its diversity. A 
number of unique clonotypes, denoted as N, 
and a number of clonotype copies, denoted as 
M represent two simplest measures of diversity. 
Their ratio yields another measure, an average 
number of clonotype copies, V = M/N. The dif-
ference between the highest number of copies 

Fig. 2. Illustration of the 
V(D)J rearrangement proc-
ess.
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for a unique clonotype, denoted as Cmax, and the 
average number of clonotype copies defines a 
crude measure of overall diversity, DC = Cmax/V 
– 1. In experimental conditions, the values of 
these measures (1 ≤ N ≤ Nmax and 1 ≤ M ≤ Mmax) 
are predetermined by rearrangement processes 
and by applied methods of clonotype detection. 
With respect to these measures, two extreme sce-
narios of reduced diversity could be observed. 
For instance, a monoclonal response, when only 
one clonotype with many copies is detected, 
indicates an extreme scenario with N = 1, V = M, 
Cmax = M, and DC = 0. Naturally, all the clono-
types that participate in the response define the 
diversity of the repertoire: C = {C1,C2,C3,…,CN}. 
If a set C contains less then two elements, a rep-
ertoire would be considered to be non-diverse. 
In another extreme case, many clonotypes with 
one copy are observed, so M = N, V = 1, Cmax = 
1, and DC = 0. If there are many clonotypes, but 
all clonotypes observed with identical frequency, 
VC1 = VC2 = VC3 = … = VCN, a clonotype distri-
bution would be considered to be non-diverse. 
All other situations are bounded by these two 
extreme forms of clonotype distributions, when 
the average number of clonotype copies is rang-
ing as 1 < V < M, and a crude measure of overall 
diversity is above zero, DC > 0, simply reflecting 
a variety in a clonotype distribution form.

Rank-frequency clonotype summaries

The analysis of clonotype distribution based on 

relative frequencies for each observed clonotype 
is limited in its ability to describe the system. 
A rank-frequency or frequency of frequencies 
approach provides an efficient summary of the 
data and allows the further development of the 
concept of repertoire diversity. Figure 4 illustrates 
the rank-frequency summary for the clonotype 
distribution shown in Fig. 3. The rank-frequen-
cies approach has been widely used in the studies 
of occurrence of species to provide a succinct 
summary of the data and to predict the probabil-
ity of occurrence of new species. In converting a 
clonotype count into a frequency of frequencies 
the clonotypes are ranked on the based of their 
rank. Implicit in such a ranking is that the high-
ranking clonotypes have expanded more than 
others, indicating a better fitness for the antigen. 
Since the only clonotypes with the sufficient 
number of copies can be detected in experimental 
conditions, the minimum observable frequency 
is one copy. Here the variety of rank-frequency 
summaries determines their diversity. We recog-
nize that an analysis of rank-frequency summa-
ries is based on somewhat simplistic assumption 
that a rank can reflect a clonotype probably to 
proliferate. Realistically, in rank-frequency sum-
maries, a “rank” only mimics a behavior of a real 
physical parameter or a latent process.

To quantify rank-frequency summaries with 
rapid decay we applied a power law equation, 
y = a/xb, where x is the rank and y is the rank 
frequency. In the simplest situation, plotting a 
log/log transformation of the data: logy = loga 
– blogx, should yield a straight line, where the 
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parameter a indicates the frequency of observing 
single copy clonotypes and parameter b describes 
the shape of the curve by indicating how rapidly 
the curve decays. However, in our case the 
repertoire distribution can be best described by 
treating it as composed of two components (see 
inset in Fig. 4). Separation of the curve into two 
portions at a critical point, xc, allows for a good 
fit of the first portion to a power law. This first 
portion includes the ranks represented by a high 
number of clonotypes, i.e. the extensive single 
copy tails from Fig. 3.

Measurement of repertoires

Identifying a clonotype

We define clonotypes based on the sequence of 
the CDR3. The CDR3 is obtained using polymer-
ase chain reaction (PCR) amplification of the 
DNA from the end of the V region to the end of 
the J region. There are approximately 40–48 VB 
regions that can participate in the rearrangement, 
some of which comprise families of genes with 
related sequences. We routinely use 25 primers 
to amplify these genes. Thus the data from some 
of the multi-gene families cannot distinguish 

exactly which family member was involved in 
the rearrangement. The PCR product is frac-
tionated by the length of the CDR3 as a first 
approximation of restriction and diversity. Those 
PCR reactions with products are subcloned into 
bacterial vectors, used for transforming bacteria, 
and the resulting bacterial clones are isolated and 
sequenced. Possible sources of error in clonotype 
identification are nucleotide transitions (more 
common) or transversions, which are introduced 
by the enzymes used for generating cDNA from 
mRNA (reverse transcriptase) as well as by the 
thermal stable polymerases used in the PCR 
technique. An estimation of this error rate comes 
from examining the non-CDR3 sequences flank-
ing the CDR3 which are invariant.

Measuring clonotype properties

The V gene usage is derived from the primer 
used for the PCR amplification. In many cases it 
can be confirmed by the sequence obtained from 
the end of the primer until the beginning of the 
CDR3. In some cases the sequence can identify 
the actual V gene used in those cases where the 
primer amplifies more than one related family 
member. The J and D region usage, CDR3 
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length, CDR3 amino acid sequence can all be 
determined from the clonotype DNA sequence 
data. Presently measuring the avidity of the 
clonotype for the antigen is a complicated proc-
ess and not easily amenable to routine use.

Measuring clonotype frequencies

Identification of clonotypes and their properties 
is relatively straightforward. Determining the 
frequency of clonotypes in a sample is less so. 
The simplest approach is to count the number 
of times a particular sequence is observed in 
the pool of bacterial colonies analyzed. Possible 
sources of error in the colony counting approach 
are changes in frequency of the mRNA or DNA 
due to the PCR amplification process, the effi-
ciency with which the PCR product is ligated 
into the bacterial plasmid vector, the effect of the 
PCR insert on the ability of the plasmid to trans-
form the bacteria and/or to effect the growth of 
the bacteria after transformation. These factors 
are difficult to control for.

Alternative approaches to clonotype fre-
quency measurement involve synthesizing 
clonotype-specific oligonucleotides that can be 
used as probes or primers. Both uses involve 
DNA-DNA hybridization and conditions must 
be found that can allow discrimination between 
related sequences and also allow for the strength 
of signal to reflect frequency of target sequence. 
The most commonly used approach is quantita-
tive PCR (qPCR) in real time. In one version 
of qPCR the oligonucleotide is used as a primer 
in the PCR process and the increase in double 
strand DNA is measured after each cycle by 
fluorescent dye intercalation. Another approach 
uses unlabeled primers and a dual-labeled self-
quenching fluorescent probe which is hydrolyzed 
during the PCR process releasing the fluorescent 
dye and resulting in signal. Possible sources of 
error include the hybridization properties of the 
primer/probe which have to be standardized to a 
known control sequence, usually a housekeeping 
gene. The proper calibration of the system is to 
use DNA representing equimolar concentrations 
of control and target sequence. Cross-hybridiza-
tion of the primer/probe with DNA of similar 
sequence to the target will effect the measure-

ment. The cross-hybridization can be measured 
using control DNA of similar sequence, but 
eliminating this effect by increasing stringency 
may be difficult. At this point the colony count-
ing method, while more cumbersome, is more 
tractable.

Measuring recall responses

In our measurements we define T cell memory 
functionally; by equating memory with the abil-
ity to respond to a recall antigen in vitro with a 
seven day kinetic. This takes advantage of the 
increased quality of memory T cells. In vitro 
manipulation of cells removed from an organism 
introduces a number of variables. Growth con-
ditions in vitro are not currently able to mimic 
conditions found in the organism. Important ana-
tomical architecture is lost. The limitation must 
be recognized in any analysis. Nevertheless, 
useful data can be obtained. An important aspect 
of in vitro approaches is reproducibility. Growth 
and stimulation in culture is a complex process 
that is meant to reflect a similar complex process 
taking place in an organism, but small changes 
in unknown variables can lead to chaos. Thus, 
there is a need to perform all these analyses in 
triplicate using identical starting materials to 
insure that the cellular processes taking place in 
the cultures are not chaotic.

A multistage dynamic process of 
immune memory generation

We view memory development as a multistage 
dynamic process that consists of three stages: 
(1) initiation, (2) selection, and (3) memory sta-
bilization. This dynamic process reflects trans-
formation of a naïve repertoire into a mature 
memory repertoire. The framework for simu-
lating immune response builds on our current 
understanding of how a naïve repertoire is gen-
erated and how a mature repertoire evolves and 
decays with aging. A simplified schematic of 
the model framework is shown in Fig. 5. At the 
current stage of framework development we are 
omitting the last stage of this process, the stage 
of memory decay.



376 Naumova et al. • ANN. ZOOL. FENNIcI Vol. 45

Repertoire initiation

A T cell exiting the thymus must express a TCR 
(α and β chains) of sufficient affinity to pass 
positive selection, which includes TCR recogni-
tion of self-peptide MHC complexes. However, 
too strong a response to self may lead to negative 
selection and deletion. A subset of such naïve T 
cells should be able to respond to any antigen-
peptide MHC complexes (pMHCI) that the cells 
may encounter after leaving the thymus (Black-
man et al. 1990). In addition to TCR recognition, 
there are a number of accessory molecules that 
participate in the activation of the naïve T cell 
by the antigen (accessory signals) (Grakoui et al. 
1999, Lee et al. 2003). The nature and number of 
these accessory signals will vary as the selection 
takes place. Thus, every T cell will have an avid-
ity value for the antigen-presenting cell based on 
the final contributions of the TCR and accessory 
molecules. These contributions can be both qual-
itative and quantitative. Thus, two T cells with 
exactly the same TCR may have different avidi-
ties based on differences in accessory molecules. 
And two T cells with identical TCR and identical 
panoply of accessory molecules may have differ-
ent avidities based on quantitative differences in 
the TCR or accessory molecules.

An important lacunae in our understanding 
of initiation is that the distribution of clono-
types generated by the thymus is not known. 
It is assumed that the naïve repertoire, origi-
nating from clonal events is not extensively 

pre-selected, and thus the clonotype distribution 
would be flat. However, experiments to clearly 
prove this are lacking. Two major mechanisms 
by which the initial repertoire may deviate from 
a uniform distribution are uneven mechanisms 
for generating rearrangements and partial expan-
sion within the allowed avidity window.

Antigen-induced selection

Contact with antigen will cause T cells with 
sufficient avidity to expand. Although some ele-
ments of selection are known (Busch & Pamer 
1999, Yewdell & Bennink 1999, Kedl et al. 2000, 
Mercado et al. 2000), the exact details of this 
process are still poorly understood. The relation 
between avidity and probability of expansion are 
also not known. A selection cycle would include 
expansion followed by arrest of expansion and 
then contraction as the antigen is cleared from 
the system. As part of this process the repertoire 
gains information about the antigen and patho-
gen from which it was derived. The probability 
of contacting antigen has to be considered. In 
the selection phase the parameters are: the prob-
ability that any one of the clonotypes actually 
contacts antigen, the relation between avidity 
for antigen and expansion, the probability of 
elimination during the contraction process, and 
the possible differences in these parameters with 
different cycles of antigen contact.
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Repertoire stabilization

As measured by us for a specific instance, the 
memory repertoire is composed of a large number 
of T cells, some of which have shown a large 
expansion, but an important characteristic is a 
heavy tail of T cells that have undergone minimal 
expansion (Naumov et al. 1998, 2003). Our cur-
rent model fits the data into a discontinuous distri-
bution, part of which can be described by a power 
law. While this description will be refined by 
further experiments, the model derived from the 
initialized repertoire subject to antigen selection 
should result in an equivalent distribution. It will 
be important to investigate the constraints imposed 
on our description of the mature repertoire by the 
sampling process. The stability of this phase will 
also be of interest. For the mature memory stage, 
the issues are the generating a more refined defini-
tion of clonotype frequency, exploring the fractal 
nature of the repertoire, establishing the relation 
between avidity and ability to divide, and deter-
mining the repertoire stability.

Framework for simulation studies 
of immune response

The simulation of a multistage dynamic proc-
ess currently consists of three distinctive stages: 
initiation, iterative cycling, and evaluation. The 
first and second stages mirror in part the initiali-
zation and selection of repertoire development 
as described in our framework. The iterative 
cycling imitates repertoire development in “real 
time” from a naïve to a mature form, where 
each cycle can be interpreted as an episode of 
exposure resulting in immune response. Finally, 
the third stage of modeling is evaluation, which 
is essential for systematic assessment of model 
performance.

Initialization

Let X be a set of unique clonotypes {x1, 
x2,..., xi,..., xN}, where N number of clonotypes. 
Let θi be a propagation probability and ωi be a 
removal probability for a clonotype xi, so that θ = 
{θ1,θ2,…,θi,…,θN}, and ω = {ω1,ω2,…ωi,…,ωN}. 

The distribution of clonotypes generated by the 
thymus, and therefore the naïve repertoire, is not 
known. We can assume that clonotype distribu-
tion is uniform, so that at the initialization step 
each of N0-starting clonotype is represented by 
only one copy. However, there may be some 
level of preferential expansion in the thymus 
or in the periphery, so we may also consider 
an array of potential distributions as a start-
up clonotype distribution, Wx, including Gaus-
sian, exponential, or mixtures of distributions. 
A simple letter-based illustration of repertoire 
initiation is in Fig. 6.

Propagation and removal

We assume that the process of repertoire devel-
opment consists of number of cycles, D, and 
each cycle consists of two consecutive iterations: 
one for the propagation and one for the removal. 
We allow each clonotype to propagate at j-cycle 
with the probability of propagation, θij (e.g. a set 
will be extended by one copy of a clonotype xi). 
At each j-cycle any clonotype can be removed 
with probability of removal, ωij. To implement 
this process, for any given unique clonotype xi 
at a j-cycle, we let Y and Z be random variables 
associated with a Bernoulli trial by defining it as 
follows: Y(not propagated) = 0, Y(propagated) = 1, Z(removed) 
= 0, Z(kept) = 1. Therefore, the simulated process 
consists of two draws: one for the repertoire 
expansion: yij ~ Bernoulli(θij); and one for the 
repertoire contraction zij ~ Bernoulli(ωij). The 
Bernoulli sampling scheme has a straightforward 
interpretation.

For example, for the first cycle, let yijk and zijk 
denote k-event at j = 1 step for the i-clonotype, 
(if y = 0 or z = 0, then k = 0; and if y = 1 or z = 
1, then k = 1) the propagation and removal proc-
esses have the following alternative scenarios:

yi10: xi is not propagated, only a single copy of xi 
at the cycle 1 is available;

yi11: xi is propagated into two copies at the cycle 
1;

yi10zi10: the only copy of xi is removed at cycle 1; 
xi is lost for future propagation;

yi11zi10: one out of two copies of xi is removed at 
cycle 1;
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yi10zi11 – the only copy of xi is kept at cycle 1;
yi11zi11 – two copies of xi are available for future 

propagation.

At this stage, we let a random expansion of 
the system to be generated from a probability 
distribution, selected at the initiation step, and 
then a random contraction of the system to 
be performed according to the selected propa-
gation/removal probabilities. An illustration of 
this process is shown in Fig. 6. By modifying 
modeling parameters, we imitate a “birth-death” 
process for different scenarios, which is compu-
tationally equivalent to a dynamic modeling with 
pre-selected expansion/contraction rates. After 
performing an expansion/contraction cycle, 
which reflects an episode of antigen-specific 
response, a simulated mature repertoire can be 
examined and evaluated.

Evaluation

We assume that after a number of cycles, the 
mature repertoire distribution can be observed 
and a correspondent rank-frequency summary 
can be created (see Fig. 7).

After completing each cycle or a series of 
cycles, we consider a decision-making step, 
which can serve as a set of stopping/checking 
rules for an iterative process. This step is essen-
tial for verification our initial assumptions about 

start-up and intermediate distributions. At each 
cycle we evaluate the number of clonotype avail-
able for propagation, total number of clonotypes, 
and clonotype frequencies.

As a first exploratory step to understanding 
the rank-frequency summaries we employed a 
simple curve fitting procedure based on a power 
law equation, y = a/xb, where x is the rank (abso-
lute counts of a particular clonotype) and y is 
the rank frequency. This well-known power law 
equation forms the basis for the discrete form 
of the Pareto distribution and the Zipf distribu-
tion. The parameter a indicates the frequency 
of observing single copy clonotypes. Parameter 
b describes the shape of the curve by indicating 
how rapidly the curve decays. In the simplest 
situation, plotting a log/log transformation of the 
data: logy = loga – blogx, should yield a straight 
line. As is shown in Fig. 4, the simple power law 
equation approximates very poorly the sharp 
decay in the rank-frequency distribution: we 
observed greater deviations at lower, rather than 
higher frequencies. Separation of the curve into 
two portions substantially improves fitting that is 
suggestive of a possible biphasic mechanism for 
repertoire generation.

Although publications related to examining 
rank-frequency summaries of the TCR reper-
toire distribution are very limited (non-existent), 
there is a body of literature suggesting differ-
ent approaches for fitting discrete long-tailed 
distributions. The selected potential candidates 

•  Step 0 – initiation

Cycle 1 (D = 1):
•  Step 1 – expansion

•  Step 2 – contraction

Cycle 2 (D = 2):
•  Step 1 – expansion
… etc.

Fig. 6. A simple letter-based illustration of repertoire initiation, expansion and contraction. At initiation a clonotype 
distribution associated with the naïve repertoire is assumed to be uniform. For illustration, each clonotype is coded 
by a single letter. Step 1 (expansion) and step 2 (contraction) form a cycle. The clonotypes propagated at the 
expansion step (a, d, f, j, …, y) are shown in green. The clonotypes removed at the contraction step (c, d, g, I, …, 
x) are shown in blue.
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for such distributions are: the traditional Pois-
son and negative binomial distributions, discrete 
Pareto, Zipf, Reimann zeta, logarithmic, and 
shifted geometric distributions; these distribu-
tions decay very rapidly at first, but later slowly 
and might be able to accommodate the need of 
fitting long-tails.

An objective and measurable criterion of the 
successful modeling is an agreement between 
experimental data, theoretical inferences, and 
simulation results. We consider the proposed 
framework to be reliable if two approaches for 
approximating the actual data by a theoretical 
distribution or a mixture of distributions (“data-
to-model” approach) and another by modeling a 
dynamic birth–death process (“model-to-data” 
approach) will give similar resulting distribu-
tions. Specifically, we expect that for a given 
set of initial assumptions after completing a 
number of cycles (to be determined) we obtain a 
resulting distribution that satisfies our theoretical 
assumptions and experimental data.

A multistage dynamic process of 
immune memory response to 
influenza matrix protein: 
experiment in silico

In designing experiment in silico, the data 

obtained from actual immunological experi-
ments typically feed the parameters for computer 
simulations. In our example, we are simulating 
the process to better understand how the mature 
repertoire has been arrived. The similarity in the 
actual and simulated data ensures a complete 
description of repertoire development. Here, 
we derived parameters for the simulation study 
from our experience and existing publications 
and compared the results of simulation with 
the actual experiment on the recall response to 
an immunodominant peptide from the influenza 
matrix protein, M158–66 restricted by HLA-A2 
described below.

Experimental data

The immune response to a peptide derived from 
amino acids 58–66 of influenza matrix protein 
(M158–66) is characterized by the extensive use 
of T cells expressing the BV17 TCR gene and a 
restricted amino acid sequence in the CDR3 of 
the TCR β-chain (Moss et al. 1991, Lehner et al. 
1995, Naumov et al. 1998). As the CDR3 inter-
acts with the antigenic peptide, a restricted motif 
is indicative of antigen driven selection. To ana-
lyze the memory T cell repertoire in the M158–66 
response, triplicate cultures were generated from 
the peripheral mononuclear cells of a known 

Mature
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Rank-frequency summary
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Fig. 7. clonotype distribu-
tion for a mature repertoire 
and its rank-frequency 
summary. clonotypes 
observed only once (e, h, 
n, p, q, r, z) are the single-
tons and form the low-fre-
quency component of the 
mature repertoire. clono-
types a and b are the most 
observed and form the 
high-frequency component 
of the mature repertoire.
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responder. The cultures showed cytotoxicity spe-
cific for the antigen and HLA-A2 by the third 
in vitro stimulation (Naumov et al. 1998). At 
this point, T cells expressing the BV17 were the 
predominant species in the cultures. The unit of 
measure of the repertoire is the clonotype, repre-
sented by the unique DNA sequence that encodes 
the CDR3. The clonotypes present in each culture 
were identified by BV17-specific PCR of the 
CDR3, bacterial cloning of the amplified CDR3, 
and DNA sequencing. The number of bacterial 
colonies representing identical clonotypes was 
counted and used as a measure of clonotype 
frequency. In total, 501 bacterial colonies were 
counted and they identified 141 distinct clono-
types (data available at www.tufts.edu/med/infor-
mid/publications.htm). Applying a power law fit 
to the first portion provides the estimates of the 
parameters: a = 0.60 and b = 1.67 (see Figs. 3 and 
4). These results indicate that the first component 
of the repertoire is highly skewed in favor of 
clonotypes represented once and that the decay 
from this high proportion of unique clonotypes is 
relatively rapid.

Fine tuning

At the first round of simulations the expansion/
contraction process was done by a Monte-Carlo 
simulation for a Bernoulli trail with a constant 
probability of 0.5 (fair coin toss) and in more 
generalized manner. We examine various scenar-
ios for the probability of propagation, θij. In all 
these scenarios we start with 200 clonotypes (N = 
200) each present at a single copy, and the prob-
ability of removal is fixed at 0.05 (ω = 0.05). The 
values for θij are drawn from: (a) a uniform dis-
tribution, θij ~ Uniform{0,1} and fair coin toss; 
(b) a linear composition as θij = 0.9 – 0.004i; (c) a 
power-like distribution that imitates our original 
clonotype distribution, θij = ib, where b = –0.618; 
(d) a normal distribution with parameters µ and 
σ2, θij ~ N{0, 1}; and (e) a mix of rates.

Each scenario at each cycle of simulation 
yields a set of trajectories indicating the life-time 
of a clonotype and the number of copies for each 
clonotype.

Figure 8 demonstrates the first two scenarios. 
The top panels illustrate the simulated trajecto-

ries for clonotype propagation and removal for 
each generation cycle. The histograms (lower 
panels) reflect the probabilistic properties of the 
rank-frequency summary for a mature repertoire 
distribution. As expected the first scenario, when 
the values for θij are drawn from the uniform 
distribution, leads to a Poisson distribution. The 
second scenario, when the values for θij are drawn 
from the standard normal distribution, leads to a 
distribution that is more skewed than the Pois-
son distribution, typical for a negative-binomial 
distribution. The approximation of the simulated 
data by the Poisson and by the negative binomial 
distributions provides a good agreement for the 
first and the second scenario, respectively. In the 
second scenario, a substantial fraction (15%) of 
clonotypes was lost for future propagation.

The most interesting results were observed 
when we use the estimates based on the results 
of the experiment described above. We consider 
the third scenario with a diverse propagation 
probability scheme, in which b = –0.618, D = 8, 
N = 200, ω = 0.05. The simulated results dem-
onstrate close similarity between the simulated 
(Fig. 9) and the actual data (see Fig. 4). After the 
final cycle of simulation, out of 200 clonotypes 
51 clonotypes were lost for propagation and the 
rest 149 clonotypes produced 498 copies. We 
observed a power-like rank-frequency relation-
ship with the shape parameters similar to the 
actual data. Applying the log-log rank-frequency 
summary to the simulated clonotype distribution 
revealed the self-similar fractal nature of the 
simulated immune response.

Insights from simulation

One of important observations was the devia-
tion from the simple fractal structure indicating 
a biphasic nature to the outcome. This nature 
became even more apparent in the scenario when 
75% of clonotypes in the naïve repertoire has 
low (θ = 0.25) propagation probability and 25% 
has high (θ = 0.75) propagation probability (see 
Fig. 10). After six cycles, the simulated reper-
toire exhibited clearly a biphasic fractal struc-
ture. If for a simple fractal structure: logqY = 1 
– logr X; where q = max(Y) and r = max(X), and 
for a biphasic fractal structure:
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Fig. 8. Simulated individual trajectories and mature repertoire distributions.
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 log(Y ) = log(µ) – λlog(X ), if x < xc;
 log(Y ) = 0, if x ≥ xc.

then we consider the area between two curves: 
one for a simple fractal structure, and another 
for an observed structure, and a measure of the 
degree of departure from simple fractal structure 
as I = Σ[1 – log(x) – log(y)]/n, where x is the 
rank, y is the frequency, and n is a number of 
observed ranks. In the simulated experiment, I 
= 0.284 (upper right panel). When we repeated 
the simulation 300 times (upper right panel) 
the rank-frequency summaries revealed stability 
of the observed biphasic fractal structure. This 
collected set of clonotype distributions can be 
thought as individual realizations from a popula-
tion with M individuals. These results suggest 
that the departure from a simple fractal structure 
increases with increasing the number of cycles 

and the fraction of clonotypes with low propa-
gation probability. The results also indicate that 
although the curve fitting is a straightforward 
procedure, the main limitation of this approach is 
the data-driven arbitrary selection of the cut-off 
point that can be crucial in drawing inferences 
about mechanism for repertoire generation.

The division of the clontypes into two groups 
with high or low propagation probabilities is in 
itself a simplification. We could expect that the 
actual distribution is more complicated with a 
span of possible θ values (see Fig 5). We expect 
that extending our models to include such a situ-
ation will further enhance the biphasic structure.

While we currently consider the probability 
of removal, ωij, to be constant for all clonotypes 
and at each cycle, it would be useful to explore 
the alternative and more realistic scenarios when 
ωij became dependent on number of cycles and 
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number of clonotypes. Moreover, advancing the 
model building we can incorporate the depend-
ence of a propagation probability on a number of 
cycles and the dependence of a removal rate on a 
total number of clonotypes for a given cycle and 
examine the relations between start-up and final 
distributions.

Conclusion

We have started to model memory T cell reper-
toire development on the basis of the proposed 
framework using as a target the existing clono-
type distribution data from a mature repertoire. 
We simulated the process of repertoire gen-
eration on the basis of theoretical assumptions 
about model specification and parameterization. 
We compared simulated repertoires with actu-
ally measured ones. We identified conditions at 
which the simulated repertoire best resembles 
the repertoire measured in the actual experiment. 
These pointed out the importance of the rate and 
manner in which repertoire contraction takes 
place in the final outcome.

We believe that carefully crafted simula-
tions within a well thought conceptual frame-
work may imitate the development of immune 
response. The similarities between simulated and 
actual distributions are strengthening our recent 
observation of a fractal self-similar structure 
in memory repertoires observed in vitro. The 
parameters and variables used in the simulation 
can help focus the thinking about memory gen-
eration by laboratory researchers as well suggest 
experiments to test the model defined by the 
simulation. We believe that illustrated proper-
ties of fractality and self-similarity might arise 
due to the following process. Memory T cells 
are required to provide preemptive protection 
against a pathogen. They operate in a complex 
environment of shifting pathogen concentra-
tions, increasing and then decreasing inflam-
matory signals, and multiple interactions with 
other immune cells and their infected targets. 
Single cells and their offspring cannot fulfill the 
required functions under these various condi-
tions. Thus a population of cells is employed. 
Thus a fractal structure to such a population 
would represent an optimization in terms of per-

colation into immune/inflammatory space.
Computational power and existing infrastruc-

ture formed an ideal foundation for new and 
exiting field of computational immunology. This 
new approach may supplement traditional meth-
odology based on in vivo and in vitro experi-
ments. As any scientific experiment, a simula-
tion experiment has to be carefully designed 
and evaluated. By incorporating regular checks 
and feedback loops into the modeling process, 
a research design employs an efficient strategy 
needed for the anticipated extensive computa-
tional effort. As much it is important to learn 
how to simulate an experiment it is crucial to 
know how to asses the simulation results, deliver 
them in a clear way and provide a proper inter-
pretation. A well crafted and well executed in 
silico experiment should force new questions, 
trigger novel hypothesis, provide insights into 
the mechanism and nature of processes under 
the study.

Acknowledgement 

This study was supported by the National Insti-
tutes of Health grants NIH-NIAID U19 AI62627 and 
HHSN266200500032C.

References

Ahmed, R. & Gray, D. 1996: Immunological memory and 
protective immunity: understanding their relation. — 
Science 272: 54–60.

Blackman, M., Kappler J. & Marrack P. 1990: The role of 
the T cell receptor in positive and negative selection of 
developing T cells. — Science 248: 1335–1341.

Busch, D. H. & Pamer, E. G. 1999: T cell affinity maturation 
by selective expansion during infection. — J. Exp. Med. 
189: 701–710.

Correia-Neves, M., Waltzinger, C., Mathis, D. & Benoist, C. 
2001: The shaping of the T cell repertoire. — Immunity 
14: 21–32.

Davis, M. M. & Chien, Y.-H. 2003: T cell antigen receptors. 
— In: Paul, W. E. (ed.), Fundamental immunology, 5th 
ed.: 227–258. Lippincott Williams & Wilkins, Phila-
delphia.

Grakoui, A., Bromley, S. K., Sumen, C., Davis, M. M., Shaw, 
A. S., Allen, P. M. & Dustin, M. L. 1999: The immuno-
logical synapse: a molecular machine controlling T cell 
activation. — Science 285: 221–227.

Kedl, R. M., Rees, W. A., Hildeman, D.A., Schaefer, B., 
Mitchell, T., Kappler, J. & Marrack, P. 2000: T cells 



384 Naumova et al. • ANN. ZOOL. FENNIcI Vol. 45

compete for access to antigen-bearing antigen-present-
ing cells. — J. Exp. Med. 192: 1105–1113.

Lee, K. H., Dinner, A. R., Tu, C., Campi, G., Raychaudhuri, 
S., Varma, R., Sims, T. N., Burack, W. R., Wu, H., Wang, 
J., Kanagawa, O., Markiewicz, M., Allen, P. M., Dustin, 
M. L., Chakraborty, A. K. & Shaw, A. S. 2003: The 
immunological synapse balances T cell receptor signal-
ing and degradation. — Science 302: 1218–1222.

Lehner, P. J., Wang, E. C., Moss, P. A., Williams, S., Platt, 
K., Friedman, S. M., Bell, J. I. & Borysiewicz, L. K. 
1995: Human HLA-A0201-restricted cytotoxic T lym-
phocyte recognition of influenza A is dominated by T 
cells bearing the Vβ17 gene segment. — J. Exp. Med. 
181: 79–91.

Mercado, R., Vijh, S., Allen, S. E., Kerksiek, K., Pilip, I. 
M. & Pamer, E. G. 2000: Early programming of T 
cell populations responding to bacterial infection. — J. 
Immunol. 165: 6833–6839.

Moss, P. A., Moots, R. J., Rosenberg, W. M., Rowland-Jones, 
S. J., Bodmer, H. C., McMichael, A. J. & Bell, J. I. 1991: 
Extensive conservation of alpha and beta chains of the 
human T-cell antigen receptor recognizing HLA-A2 and 

influenza A matrix peptide. — Proc. Natl. Acad. Sci. 
USA 88: 8987–8990.

Naumov, Y. N., Hogan, K. T., Naumova, E. N., Pagel, J. T. & 
Gorski, J. 1998: A class I MHC-restricted recall response 
to a viral peptide is highly polyclonal despite stringent 
CDR3 selection: implications for establishing memory T 
cell repertoires in “real-world” conditions. — J. Immu-
nol. 160: 2842–2852.

Naumov, Y. N., Naumova, E. N., Hogan, K. T., Selin, L. K. 
& Gorski, J. 2003: A fractal clonotype distribution in the 
CD8+ memory T cell repertoire could optimize potential 
for immune responses. — J. Immunol. 170: 3994–4001.

Selin, L. K., Lin, M. Y., Kraemer, K. A., Pardoll, D. M., 
Schneck, J. P., Varga, S. M., Santolucito, P. A., Pinto, 
A. K. & Welsh, R. M. 1999: Attrition of T cell memory: 
selective loss of LCMV epitope-specific memory CD8 
T cells following infections with heterologous viruses. 
— Immunity 11: 733–742.

Yewdell, J. W. & Bennink, J. R. 1999: Immunodominance 
in major histocompatibility complex class I-restricted 
T lymphocyte responses. — Annu. Rev. Immunol. 17: 
51–88.

This article is also available in pdf format at http://www.annzool.net/


