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Population-based genetic association studies are increasingly used to explore the 
association between genetic polymorphisms and outcomes such as disease-status and 
disease-related quantitative traits. Because multiple polymorphisms are typically avail-
able, there are several statistical analysis strategies that might be appropriate depend-
ing on the goal of the study. In this paper, we compare several linear model parameter-
izations that might be used to perform a test of association between a genomic region 
defined by multiple SNPs and a quantitative trait. We compare via simulation the type 
I error and power of the omnibus F-test to detect association. As expected, there is no 
one most powerful test across the genetic models we considered, although tests based 
on simple parameterizations that do not rely on phase information can be as powerful 
as more complicated haplotype-based tests even when it is a haplotype that is truly 
associated with the trait.

Introduction

Many diseases of public health importance are 
complex genetic diseases, which likely result 
from the interaction of multiple genetic poly-
morphisms and environmental stimuli. Genetic 
association studies are increasingly used as a 
tool to search for genetic variants that influence 
susceptibility to diseases such as type 2 diabetes 
and to variability in disease-related quantita-
tive traits such as insulin sensitivity. Advances 
in genotyping technology have dramatically 

reduced the cost and time of obtaining dense 
single-nucleotide polymorphism (SNP) data in 
large samples of individuals. Genetic association 
studies often test whether (1) the distribution of 
alleles or genotypes at one or more SNPs dif-
fers between samples of affected and unaffected 
individuals, or (2) the alleles or genotypes at one 
or more SNPs explain variability in a disease-
related quantitative trait. These studies may be 
conducted using only a very small region of the 
genome as part of candidate gene study, but can 
now be conducted on a genome-wide scale.



430 Meng & Fingerlin • ANN. ZOOL. FENNIcI Vol. 45

Because multiple SNPs are typically avail-
able for genetic association studies, there are 
several statistical analysis strategies that might 
be appropriate depending on the goal of the 
study. The strategies most often used gener-
ally fall into two categories: those that use SNP 
genotypes and those that use haplotypes. Tests of 
association that use haplotypes are of interest, in 
part, because of the biological interpretation of a 
haplotype. A sequence of alleles along a single 
chromosome, a haplotype represents a portion of 
that chromosome and has the potential to capture 
multiple cis-acting variants. In addition, because 
of linkage disequilibrium between variants along 
a chromosome, a haplotype may be more cor-
related with an ungenotyped functional variant 
than any single genotyped variant, potentially 
increasing power to detect association (Schaid 
2004). Although the parameter estimates from 
a SNP-based association study can be easily 
interpreted, models which include multiple SNPs 
do not model potentially relevant haplotype 
structure. Haplotype association analyses may 
increase power, but require stronger assumptions 
regarding the importance of multiple SNPs in 
defining the functional variant(s), and the effects 
of individual loci may not be as easily identified.

Several authors have compared the power 
of tests of association based on either single-
SNP or haplotype tests of association for both 
qualitative and quantitative traits (e.g. Long & 
Langely 1999, Bader 2001, Akey & Xiong 2001, 
Conti & Gauderman 2004, Schaid 2004). As 
noted by Schaid (2004), more comprehensive 
investigations that compare additional models 
which include multiple SNPs and SNP interac-
tion effects are warranted. In this paper, we 
compare several linear models that can be used 
to perform an initial test of association between a 
genomic region defined by multiple SNPs and a 
quantitative trait. Following a similar investiga-
tion conducted by Conti and Gauderman (2004) 
for a qualitative trait, we compare via simulation 
the type I error and power of the omnibus F-test 
to detect association between a genomic region 
and a quantitative trait. To illustrate the applica-
tion of the different statistical models, we use 
data from the Insulin Resistance and Atheroscle-
rosis Study.

Material and methods

We assume that genotypes for two or more SNPs 
in a candidate region are available on a set of 
unrelated individuals to test for association with 
a quantitative trait. Further, we make the simpli-
fying assumption that haplotype phase is known, 
the implications of which we describe in the Dis-
cussion. We use a linear regression framework 
to model the relationship between one or more 
SNPs and the quantitative trait and assume that 
the quantitative trait (perhaps after appropriate 
transformation) follows a normal distribution 
conditional on the independent variables in the 
model. As described below, we assume the pri-
mary objective is to test for association between 
the candidate region and the quantitative trait 
and that subsequent analyses can be conducted 
to determine which SNP(s) or haplotype(s) might 
be most important.

Below we describe several models that have 
been proposed for testing for association between 
one or more SNPs and a quantitative trait and 
how we implemented them for this study.

Linear models for multilocus data

Models based on SNPs

The three most commonly used approaches that 
use SNP genotypes rather than haplotype infor-
mation are (1) a single-SNP model, where each 
SNP is tested independently of the other SNPs, 
(2) a joint main effects model, where the omni-
bus F-test is used to test for association with all 
SNPs simultaneously, and (3) interaction models 
that include two or more of the SNPs of interest, 
where the omnibus F-test is again used to test 
for association. If there are N SNPs, N separate 
regression models are constructed and N F-statis-
tics are computed for (1). The single SNP models 
have the following form for n = (1, …, N):

 Y = b0 + bnXn + e (1)

where Y is a variable for the quantitative trait and 
Xn is a variable coding the genetic effect. The 
variable Xn may take on several forms, includ-
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ing that of an indicator variable representing a 
dominant or recessive model for a given allele. 
Here, we let Xn = the number of rare alleles at 
marker n; i.e. Xn = 2 for genotype AA, Xn = 1 for 
genotype Aa and Xn = 0 for genotype aa under an 
additive model, where A is the rare allele and a 
is the common allele at one locus. A joint main 
effects model has the following form:

  (2)

To capture interaction effects, an interac-
tion model can be built by adding interaction 
terms into the joint main effects model. Here 
we include only second-order interactions where 
Xm ¥ l = Xm ¥ Xl for markers m and l.

  (3)

For each of the multilocus models (2 and 3), 
we use an omnibus F-test to compare the full 
model with the model with no genetic effects as 
a test for association between the chromosomal 
region and the quantitative trait. A test for asso-
ciation between each SNP (or a subset of SNPs) 
and the trait can be obtained by a partial F-test in 
subsequent analyses. We apply a Bonferroni cor-
rection for the single-SNP models to correct for 
the multiple tests computed.

Models based on haplotypes

Similar to the multi-SNP models that assume an 
additive effect of each allele, for a set of H hap-
lotypes, we model the additive haplotype effect 
for H – 1 of the haplotypes in a regression model 
as above, with

  (4)

Here Xh is a variable for the number of haplo-
types of type h in each individual. In the absence 
of an a priori putative at-risk haplotype, the most 
common haplotype is generally treated as the 
reference haplotype. Also similar to the multi-
SNP analyses, an omnibus F-test is used as a test 
for association between the chromosomal region 
and the quantitative trait. A partial F-statistic can 

be calculated for each gh to test for association 
between each haplotype and the trait in subse-
quent analyses.

The SIMPle model

To take advantage of the simplicity of the SNP-
based analyses while retaining the ability to 
model haplotype effects, Conti and Gauderman 
(2004) proposed a genotype-level analysis to 
jointly model SNPs via a SNP interaction model 
with phase information (SIMPle) to capture the 
underlying haplotype structure. Phase refers to 
whether or not the alleles are in cis (exist on the 
same haplotype). The SIMPle paradigm is very 
similar to the interaction model (3) above, but 
the interaction terms are modified. In the SIMPle 
model, the phase information between pair-wise 
SNPs is included by modifying the second order 
interaction terms in model (3) to reflect haplo-
types. For example, for SNPs 1 and 2, with rare 
alleles A and B, respectively, X´1 ¥ 2 combines the 
phase information and interaction term in the fol-
lowing coding scheme given the two haplotypes 
for individual i, hi1 and hi2:

 2 if X1 ¥ X2 = 4
 1 if X1 ¥ X2 = 2
X´1 ¥ 2 1 = if X1 ¥ X2 = 1 and hi1 or hi2 is AB
 0 if X1 ¥ X2 = 0 and neither hi1 nor hi2 is AB
 0 if X1 ¥ X2 = 0

where X1 and X2 are assigned a value under an 
additive model as described above in (1). Note 
that for those with heterozygous genotypes at 
both SNPs, the interaction term takes on a dif-
ferent value depending on which haplotypes 
the person carries. Because of this modification 
in the interaction term, the linear predictor for 
the SIMPle model distinguishes between indi-
viduals with haplotypes AB/ab and those with 
Ab/aB, whereas the linear predictors for those 
two haplotype combinations are identical in the 
interaction model (Table 1, rows 4 and 5). Again, 
an omnibus F-test is used as a test for association 
between the chromosomal region and the trait. 
The SIMPle parameterization has the advan-
tage of being able to capture the importance of 
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pair-wise phase, whereas the SNP-based mul-
tilocus models (2 and 3) do not. Note that the 
SIMPle and haplotype models give the same fit 
to the data when there are only two SNPs. For 
more than two SNPs, the SIMPle phase/interac-
tion terms as we have implemented them here 
capture only pair-wise phase effects, whereas 
the haplotype model captures phase information 
across all markers.

Simulation study

To compare the size and power of the F-test 
across the above linear models, we simulated 
multiple SNP (≥ 2 SNPs) data under the null 
hypothesis of no association between any of 
the SNPs and the quantitative trait (for size) 
and under several alternative hypotheses cor-
responding to at least one of the SNPs being 
associated with variation in the quantitative trait 
(for power). We generated haplotype information 
for each individual so that phase was known. 
We generated a quantitative trait value for each 
person (Y0), drawn from a standard normal dis-
tribution with mean 0 and standard deviation 
(SD) 1. We assumed a 0.2 SD difference in 
means between genotypic groups of interest 
(more below), which accounts for approximately 
4% of the variance of the quantitative trait if 
the true variant allele has a 50% population fre-
quency. We generated data for a population size 
of 25 000, and selected a random sample of 500 
individuals for each replicate. For each simula-

tion condition, we generated 1000 replicates and 
calculated the omnibus F-test for each of the 
models described above. Size and power were 
determined by the proportion of replicates that 
had a p ≤ 0.05.

In the first set of simulation conditions (simu-
lation study I), we generated data for two SNPs 
so that there were only 4 possible haplotypes; 
SNP 1 with alleles A and a and SNP 2 with alleles 
B and b, each with frequency 50%. In scenario 1, 
we assumed that each copy of allele A from SNP 
1 increased the trait value by 0.20 SD. In sce-
nario 2, we assumed that neither allele A nor B 
were true trait-influencing variants, but could be 
used as proxies for an unknown quantitative trait 
variant within the candidate region. We included 
a third, unknown quantitative-trait-influencing 
variant, D, which was located between SNPs 1 
and 2 and had the same r2 value with both A and 
B (r2 = 0.85). To model an additive haplotype 
effect, in scenario 3, we assumed that each copy 
of haplotype AB increased the trait value by 0.2 
SD. In scenario 4, to simulate the case where 
multiple haplotypes may influence the trait, we 
assumed that the AB haplotype was associated 
with the largest increase in the trait but that the 
Ab and aB haplotypes also increased the mean 
trait value as compared with the ab haplotype 
(AB > Ab > aB; 0.1, 0.06, 0.04 SD, respectively). 
Finally, in scenario 5, we assumed that alleles A 
and B both increased the mean trait value and 
that the interaction of A and B (not necessarily 
on the same haplotype) was also associated with 
an increase in the quantitative trait value (A = B 

Table 1. Linear predictors for multilocus models (adapted from conti et al. 2004).

Haplotype Genotype SNP model SIMPle Haplotype
profile  
  Main Interaction

AB|AB AA, BB b0 + 2bA + 2bB b0 + 2bA + 2bB + 4bAB b0 + 2bA + 2bB + 2bAB g0 + 2gAB

AB|Ab AA, Bb b0 + 2bA + bB b0 + 2bA + bB + 2bAB b0 + 2bA + bB + bAB g0 + gAB + gAb

AB|aB Aa, BB b0 + bA + 2bB b0 + bA + 2bB + 2bAB b0 + bA + 2bB + bAB g0 + gAB + gaB

AB|ab* Aa, Bb b0 + bA + bB b0 + bA + bB + bAB b0 + bA + bB + bAB g0 + gAB

Ab|aB* Aa, Bb b0 + bA + bB b0 + bA + bB + bAB b0 + bA + bB g0 + gAB + gaB

Ab|Ab AA, bb b0 + 2bA b0 + 2bA b0 + 2bA g0 + 2gAb

aB|aB aa, BB b0 + 2bB b0 + 2bB b0 + 2bB g0 + 2gaB

Ab|ab Ab, bb b0 + bA b0 + bA b0 + bA g0 + gAb

aB|ab aa, Bb b0 + bB b0 + bB b0 + bB g0 + gaB

ab|ab aa, bb b0 b0 b0 g0

* these two haplotype profiles result in the same genotype.
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< AB; 0.05, 0.05, 0.10 SD, respectively). Within 
scenarios 1 and 3–5, we also varied whether A 
and B were in linkage disequilibrium. For sce-
narios 1.1, 3.1, 4.1 and 5.1, we assumed that A 
and B were in linkage equilibrium, so that the 
four haplotypes (AB, Ab, aB and ab) had equal 
frequencies (0.25). For scenarios 1.2, 3.2, 4.2 
and 5.2, we assumed that A and B were in link-
age disequilibrium with r2 = 0.85, which corre-
sponds to haplotype frequencies: AB = ab = 0.48 
and Ab = aB = 0.02.

We also constructed a series of simulation 
conditions (simulation study II) to more broadly 
reflect the kinds of data we expect to see in data 
applications for N = 2, 3 and 4 SNPs in scenarios 
6, 7 and 8. We again simulated 4 haplotypes 
with frequencies (ab = 0.05, Ab = 0.15, aB = 
0.35 and AB = 0.45) for the two-SNP scenarios 
(6.1, 6.2, 6.3). To reflect the fact that haplotype 
analyses are generally only conducted in regions 
of relatively high LD, and therefore not all of 
the possible haplotypes are observed, we gener-
ated data for only 5 of the 8 possible haplotypes 
for the three-SNP scenarios (7.1, 7.2, 7.3), and 
for 8 of the possible 16 for the four-SNP sce-
narios (8.1, 8.2 and 8.3). Following Stram et al. 
(2003) we used the observed four-SNP haplo-
type frequencies from a study of the PGR gene. 
Since the frequency of the true quantitative trait 
variant is unknown, we varied which haplotype 
increased the trait value across scenarios 6, 7 
and 8. We assumed a rare haplotype (6.1, 7.1, 
8.1), a common haplotype (6.2, 7.2 and 8.2), or 
a random haplotype (each replicate had a ran-
domly chosen haplotype; 6.3, 7.3 or 8.3) was 
the trait-influencing haplotype (Table 2). Finally, 
rather than fix the haplotype frequency distribu-
tions, we also randomly generated haplotype 
frequencies based on a multinomial distribution 
for each replicate, and then randomly chose one 
of those haplotypes to be the trait-influencing 
haplotype (6.4, 7.4 and 8.4).

Application: Association analysis of 
SNPs in NFKBIA and insulin sensitivity

Type 2 diabetes mellitus (T2DM) is a common, 
chronic disease characterized by hyperglycemia 
caused by defects in insulin secretion and insu-

lin action. The regulatory mechanism behind 
the progress from normal glucose tolerance to 
T2DM is not well understood. Increasing insulin 
resistance has been observed prior to the devel-
opment of T2DM (Lillioja et al. 1993, Haffner 
et al. 1995, Weyer et al. 1999) and amelioration 
of insulin resistance by thiazolidinediones in 
those at high risk has been shown to reduce risk 
of T2DM in some cases (Buchanan et al. 2000). 
Hence, reducing insulin resistance (increasing 
insulin sensitivity) has the potential to prevent 
T2DM. We examined several SNPs in NFKBIA, 
a candidate gene for influencing insulin sensitiv-
ity (Shoelson et al. 2003), and tested for asso-
ciation between these SNPs and a measure of 
insulin sensitivity (SI) in the Insulin Resistance 
and Atherosclerosis Study (IRAS).

IRAS was a community-based epidemiologi-
cal study of 1625 men and women designed to 
determine the correlates and predictors of insulin 
resistance and atherosclerosis. Detailed informa-
tion about the study design and the measurements 
has been published elsewhere (Wagenknecht et 

Table 2. Haplotype frequencies used for simulation 
study II.

 Haplotype Frequency

Two SNPs
  1 00 0.05
  2 10 0.15*
  3 01 0.35
  4 11 0.45**
Three SNPs
  1 000 0.266
  2 001 0.202
  3 110 0.131
  4 011 0.075*
  5 111 0.326**
Four SNPs
  1 0000 0.321
  2 1000 0.163
  3 0100 0.031
  4 0001 0.143
  5 1100 0.020*
  6 1010 0.041
  7 0101 0.041
  8 1110 0.245**

* rare haplotype for simulation in 6.1, or 7.1 or 8.1.
** common haplotype for simulation in scenario 6.2, 7.2 
and 8.2.
Note: 0 represents common allele and 1 represents 
rare allele for given SNP.
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al. 1995). Briefly, a total of 165 individuals from 
San Antonio, TX, and 207 from the San Luis 
Valley, CO, subsequently consented to DNA 
studies and had a measure of insulin sensitivity 
(SI) based on a frequently sampled intravenous 
glucose tolerance test (FSIGT). All studies were 
approved by the Institutional Review Boards of 
the respective institutions.

SNPs were selected from the SeattleSNP 
database (http://pga.gs.washington.edu/) in and 
around NFKBIA. A total of 11 SNPs were chosen 
for genotyping by requiring that each un-geno-
typed SNP had an r2 ≥ 0.85 with at least one 
genotyped SNP. Haplotype blocks were defined 
using Gabriel’s definition (Gabriel et al. 2002) 
using the Haploview software (Barrett et al. 
2005). Briefly, haplotype blocks are composed 
of groups of SNPs that are jointly in strong LD, 
such that there are fewer haplotypes observed 
than expected. Such blocks are identified for sev-
eral reasons depending on the context; here the 
goal was to be able to obtain precise estimates of 
haplotype frequencies.

We computed the omnibus F-test for the 
SNP-based models using all SNPs. For each 
block, in addition to the SNP-based analyses 
(single-SNP, joint, interaction), we performed the 
analyses that required phase information (SIMPle 
and haplotype) using the SNPs in that block. 
Because haplotype phase was unknown, we used 

the most likely haplotype pair for each indi-
vidual. The most likely pair of haplotypes was 
inferred for each individual based on the poste-
rior probability associated with each pair for each 
person. These posterior probabilities were based 
on the estimated sample haplotype frequencies 
obtained via a Bayesian algorithm implemented 
in PHASE2.1 software (Stephens et al. 2001). 
Because the Bayesian algorithm requires that cer-
tain assumptions be made regarding population 
genetic parameters, we compared the haplotype 
frequency estimates obtained using the Bayesian 
algorithm to the maximum likelihood estimates 
obtained using an Expectation–Maximization 
(EM) algorithm using Haploview (Barrett et al. 
2005). Both algorithms resulted in very similar 
haplotype frequency estimates. As the SI distribu-
tion is skewed, the natural log transformation was 
used (Wagenknecht et al. 2003).

Results

Type I error rates and power comparison

The size of the F-test for each of the models 
considered was very close to the nominal 0.05 
level (data not shown). In what follows, for ease 
of discussion, we refer to the power of the F-test 
associated with a certain model parameterization 

Table 3. Power for 2-SNP scenarios (simulation study I).

Model (df) Single-SNP 1 (1) Single-SNP 2 (1) Joint (2) Interaction (3) Haplotype (3) SIMPle (3)

1.1 0.81 0.03 0.80 0.74 0.73 0.73
1.2 0.81 0.74 0.81 0.76 0.76 0.76
2 0.74 0.75 0.74 0.68 0.69 0.69
3.1 0.33 0.30 0.52 0.57 0.66 0.66
3.2 0.79 0.80 0.82 0.77 0.77 0.77
4.1 0.11 0.06 0.16 0.14 0.14 0.14
4.2 0.26 0.28 0.28 0.23 0.24 0.24
5.1 0.67 0.63 0.88 0.89 0.88 0.88
5.2 0.98 1.00 0.99 0.99 0.99 0.99
5.3 0.21 0.18 0.33 0.34 0.32 0.32
5.4 0.54 0.56 0.57 0.55 0.54 0.54

Note: Frequency of allele A at SNP 1 and allele B at SNP 2: 0.5. Haplotype frequencies are AB = Ab = aB = ab 
= 0.25 in 1.1, 3.1, 4.1, 5.1. Haplotype frequencies are AB = ab = 0.48 and Ab = aB = 0.02 in 1.2, 2, 3.2, 4.2 and 
5.2. Trait variant is allele at SNP 1 for scenarios 1.1 and 1.2, is unobserved allele in LD with alleles from SNPs 1 
and 2 for scenario 2, is haplotype AB for 3.1 and 3.2, is haplotype for 4.1 and 4.2, with haplotype AB most strongly 
associated (effect of AB > Ab > aB).  For 5.1–5.4, interaction between alleles A and B influences trait. Values set in 
boldface indicate highest power for simulation scenario.
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as the power for that model. The most important 
comparisons are within each simulation condi-
tion due to the artifactual differences in power 
across simulation conditions associated with the 
varying simulation conditions.

There are several important patterns to note 
when comparing the power for each of the 
models considered for the first two-SNP simula-
tion scenarios (Table 3). First, since the SIMPle 
model is identical to the haplotype model for 
two SNPs, the two models have identical power 
for every simulation condition. The only case 
where the haplotype/SIMPle model was the most 
powerful was under the circumstance that only 
the AB haplotype was assumed to influence the 
trait (scenario 3.1). With the exception of sce-
nario 3.1, the interaction model had essentially 
identical power to the haplotype/SIMPle model 
across the simulation conditions considered. In 
addition, with the exception of scenario 3.1, the 
joint model was as powerful as the most power-
ful model across the simulation scenarios.

When a single allele at SNP 1 was the only 
trait-influencing variant (scenarios 1.1, 1.2), the 
joint model and the single SNP model for SNP 1 
were the most powerful models among those 
tested and had similar power due to the Bonfer-
roni correction of the single-SNP p value. As 
expected, the interaction, haplotype and SIMPle 

models had lower power due to the added degree 
of freedom in the absence of a true haplotypic 
or interaction effect. When the true variant was 
unobserved, but was in LD with alleles at SNPs 1 
and 2, respectively (scenario 2), both single-SNP 
models and the joint model had similar power. 
When the AB haplotype was associated with the 
largest increase in the trait value compared to the 
ab haplotype, but there were also trait differences 
associated with the other haplotypes (scenario 
4.1, 4.2), the joint model was the most powerful 
unless there was strong LD between the alleles at 
the two SNPs, in which case both the single-SNP 
models had the same power as the joint model. 
When alleles at each SNP influenced the trait, 
and the interaction of the alleles also influenced 
variation in the quantitative trait, the joint model 
showed comparable power to the interaction 
model even though the test based on the interac-
tion model might have been expected to be the 
most powerful (scenarios 5.1, 5.2, 5.3, 5.4). This 
similarity in power for the joint model did not 
persist when there was no main effect of either 
locus (data not shown). For the scenarios that 
assumed strong LD between the alleles at SNP 
1 and 2 (1.2, 5.2) but did not explicitly assume 
a haplotypic effect, since the AB haplotype was 
so frequent, the A and B alleles were essentially 
observed together only in the context of that hap-

Table 4. Power for simulation study II.

 Model
 

Scenario (# SNPs) Single-SNP Joint Interaction Haplotype SIMPle

6.1 (2) 0.51 0.85 0.83 0.86 0.86
6.2 (2) 0.55 0.95 0.94 0.97 0.97
6.3 (2) 0.55 0.89 0.88 0.90 0.90
6.4 (2) 0.28 0.46 0.47 0.52 0.52
7.1 (3) 0.03 0.44 0.35 0.42 0.42
7.2 (3) 0.64 0.91 0.86 0.94 0.94
7.3 (3) 0.19 0.56 0.54 0.67 0.67
7.4 (3) 0.18 0.40 0.36 0.42 0.42
8.1 (4) 0.02 0.12 0.13 0.21 0.21
8.2 (4) 0.53 0.89 0.77 0.87 0.87
8.3 (4) 0.09 0.29 0.25 0.34 0.34
8.4 (4) 0.12 0.30 0.25 0.32 0.32

Note: rare haplotype influences trait in 6.1, 7.1, 8.1; common haplotype influences trait in 6.2, 7.2, 8.2, and ran-
domly chosen haplotype (for each replicate) influences trait in 6.3, 7.3 and 8.3 (see Table 3). A randomly chosen 
haplotype with a randomly generated frequency influences trait in 6.4, 7.4, and 8.4. Values set in boldface indicate 
highest power for simulation scenario.
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lotype. Hence, the AB haplotype was strongly 
associated with the trait and the haplotype model 
had correspondingly good power.

For the second set of simulation scenarios 
that considered a broader range of underlying 
genetic models, two comparisons are of particu-
lar interest (Table 4). Across the conditions we 
considered, the haplotype and SIMPle models 
are generally the most powerful among those we 
compared and have identical power even though 
they do not give the same fit to the data when 
there are more than two SNPs (scenarios 7 and 8; 
Table 4). It is important to note, however, that the 
joint model often had power similar to or slightly 
higher than these two models; in only two cases 
(7.3 and 8.1) was the power for the joint model 
appreciably lower than that for the haplotype and 
SIMPle models.

Application to NFKBIA and insulin 
resistance

The NFKBIA gene is located on chromosome 14 
and is composed of six exons and five introns 
(Fig. 1). Genotypes were obtained for > 95% 

of subjects for each SNP. Based on Gabriel’s 
block definition (Gabriel et al. 2002), two haplo-
type blocks were defined; Block 1 composed of 
rs3138055, rs696 and rs8904, and Block 2 com-
posed of rs1957106, rs2233409 and rs3138053 
(Fig. 1). Genotype frequencies at all SNPs were 
consistent with Hardy-Weinberg Equilibrium 
proportions (Table 5). Since SNPs rs696 and 
rs8904 were in near perfect LD, we used only 
rs696 in all models.

Variation in NFKBIA was not significantly 
associated with insulin resistance using the 
omnibus F-test for any of the SNP-based linear 
model parameterizations. In addition, when we 
analyzed SNPs from block two separately, none 
of the omnibus tests were significant. However, 
block 1 was associated with insulin sensitivity 
(p = 0.03) based on the F-tests from the joint, 
SIMPle and haplotype models. Because there 
were only two SNPs included, the SIMPLe and 
haplotype models would usually give the same fit 
to the data. However, the G allele at rs3138055 is 
essentially seen only on the same chromosome 
as the G allele at rs696, and so only three of the 
possible four haplotypes have frequency > 0.2% 
(Table 6). As such, the interaction term in the 

Fig. 1. LD blocks in 
NFKBIA gene in IRAS 
Hispanic sample. Num-
bers indicate squared 
correlation coefficient and 
shades of gray represent 
D´; Darker indicates higher 
D´ value.
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SIMPle model is highly correlated with the term 
for SNP rs3138055, and having both terms in 
the model was not appropriate. Hence, in this 
case, the joint model and the SIMPle model 
were identical. Both the haplotype model and 
the joint model indicate that both rs3138055 
and rs696 are associated with insulin sensitivity. 
Tests of the individual parameter estimates for 
the haplotype model indicate that the haplotype 
with the allele A at rs3138055 and allele G at 
rs696 is associated with an increase in insulin 
sensitivity as compared with the haplotype that 
that has allele G at rs3138055 and G at rs696 
(p = 0.02). Even though the interaction model 
parameter estimates gave the same interpretation 
as the haplotype model, because it required three 
parameter estimates as compared with two for 
the haplotype model, the p value for the F-test 
for the interaction model was 0.08. The joint 
model was useful for testing purposes, but in 
this case was harder to interpret than the hap-
lotype model since the effect, if real, appears to 
be haplotypic. In summary, these data illustrate 
the fact that the linkage disequilibrium patterns 
in a region of interest often dictate that the joint 
model has similar power to the haplotype model 
even when a haplotype effect is driving the asso-
ciation.

Discussion

Genetic association studies are an important tool 
in the search for disease-susceptibility variants 

that may influence risk of disease through a 
disease-related quantitative trait. Since many, 
perhaps densely-spaced, SNPs may define func-
tional variation, statistical models that can be 
used to explore the association of these SNPs 
with quantitative traits are important for biomedi-
cal research. We have compared the power of the 
most common statistical testing frameworks used 
to test for association between a genomic region 
and a quantitative trait under several different 
genetic models for the relationship between the 
genomic region and the quantitative trait in a 
sample of unrelated individuals. We used a simu-
lation approach to investigate the relative power 
of the various tests of association. This approach 
was particularly useful because it allowed us to 
compare the testing strategies using underlying 
genetic models that included non-trivial linkage 

Table 5. Allele frequency estimates for SNPs in NFKBIA.

SNP Name Position HWE* p Minor allele Minor allele
    frequency

01 rs1951276 34923139 0.21 0.27 A
02 rs743228 34929825 0.18 0.405 G
03 rs7152826 34932155 0.42 0.419 A
04 rs3138056 34938165 0.67 0.48 G
05 rs3138055 34940205 0.84 0.448 G
06 rs696 34940844 0.22 0.292 A
07 rs8904 34940968 0.13 0.288 T
08 rs13138054 34942058 0.71 0.093 A
09 rs1957106 34943521 0.33 0.195 A
10 rs2233409 34944021 0.63 0.127 T
11 rs3138053 34944605 0.69 0.224 G

* Hardy-Weinberg Equilibrium.

Table 6. Haplotype frequency estimates for blocks 1 
and 2 in NFKBIA.

Haplotype* Haplotype frequency

Block 1
  GGc 0.448
  GAT 0.002
  AGc 0.259
  AAc 0.001
  AAT 0.291
Block 2
  GcA 0.581
  GcG 0.100
  GTG 0.124
  AcA 0.192
  ATA 0.002
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disequilibrium patterns among SNPs which can 
be very difficult or impossible to investigate 
when making analytic comparisons.

Conti and Gauderman (2004) compared 
the power of these statistical testing strategies 
for tests of association between multiple SNPs 
and a dichotomous trait. They found that the 
SIMPle model has comparable power to the hap-
lotype model for detecting association between a 
genetic region represented by several SNPs and 
a dichotomous disease trait when the underlying 
functional variant is represented by a haplotype. 
Prior to this investigation, whether similar con-
clusions could be drawn with respect to quantita-
tive traits was unknown.

Consistent with the observations of Conti and 
Gauderman (2004) for a qualitative trait, among 
the simulation scenarios we considered, the hap-
lotype and SIMPle models have nearly identical 
power for a quantitative trait. When a specific 
haplotype is the true variant, both models are as 
powerful as the most powerful model. However, 
when the true variant is a single SNP or there are 
multiple haplotypes that influence a quantitative 
trait, the single-SNP models and joint model 
can be more powerful than both the haplotype 
and SIMPle models. Chapman et al. (2003) and 
Clayton et al. (2004) also found that tests based 
on a joint model (their main effects model) often 
had greater power than those based on haplotypes 
when a single variant, perhaps ungentoyped, was 
associated with a dichotomous outcome. The 
performance of the joint model is important as it 
allows joint testing of markers that are not neces-
sarily in high linkage disequilibrium, while the 
current implementation of the haplotype model 
generally requires relatively high LD between 
the markers so that haplotype frequencies are 
estimated with reasonable accuracy and preci-
sion. (Fallin & Schork 2000).

Several others have investigated the relative 
merits of the single-marker (model 1) and haplo-
type (model 4) testing paradigms in the context 
of quantitative traits (e.g. Long & Langely 1999, 
Bader 2001, Schaid 2004). Our results are con-
sistent with those investigations, indicating that 
the single-marker tests have the potential to be 
more powerful than haplotype tests when there 
are fewer SNPs than haplotypes and when one of 
the SNPs is either the causative SNP or in nearly 

perfect LD with the causative SNP. While Bader 
(2001) and others have noted the potential utility 
of jointly modeling the single-SNP effects and 
including interaction effects in quantitative trait 
analyses, those models were not within the scope 
of their investigations.

Our results indicate that, as expected, the 
assumptions about the number of true variant 
alleles, the LD between markers and the true 
trait variant(s), and the frequency of the marker 
and trait alleles influence the relative power 
among different statistical models and the abso-
lute power for a single model across simulation 
conditions. For example, across the frequencies 
we considered, for a fixed effect of the allele (or 
haplotype), power is increased across models as 
the allele frequency increases. This can be illus-
trated by comparing scenarios 3 and 4. As the 
frequency of haplotype AB decreases, the power 
for all models was reduced since the effect of 
the haplotype was held constant. The power for 
each model decreases as the number of SNPs 
increases from two to four across all of the rare, 
common and random haplotype scenarios. As the 
number of SNPs increases, so does the number 
of single-SNP models and the degrees of free-
dom associated with the joint, interaction, and 
SIMPle models. The number of SNPs used for 
testing has also been noted as an important factor 
in determining power by Slager et al. (2000) and 
Morris and Kaplan (2002) for case-control stud-
ies. We considered up to four SNPs for use in 
analyses in what is presented here, although lim-
ited simulations show very similar results for up 
to eight SNPs. Since the number of potential hap-
lotypes (and hence degrees of freedom) increases 
with each additional SNP, the single-SNP and/or 
joint tests will likely still be as or more powerful 
than haplotype-based tests when the true variant 
is a single SNP or there are multiple haplotypes 
that influence a quantitative trait.

We assumed that phase was known for our 
simulations. When phase is not known, ignoring 
the uncertainty in phase assignment may yield 
biased parameter estimates and inappropriately 
small estimates of the variability of those esti-
mates (Schaid 2002, Zaykin et al. 2002, Kraft 
et al. 2005, Cordell 2006). As such, methods are 
available to appropriately account for unknown 
phase assignment for quantitative trait associa-
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tion tests using unrelated individuals (Zaykin et 
al. 2002), but the properties of those methods are 
not well described for all of the parameteriza-
tions we explored. As genotyped SNPs are more 
densely spaced and as sequencing technology is 
increasingly feasible for large-scale studies, we 
expect that real data analyses will become more 
similar to phase-known than phase-unknown. 
However, investigating the impact of unknown 
phase on the relative power of the various param-
eterizations is a logical extension to the work 
presented here. We expect that in the phase-
unknown case, the joint and single-SNP models 
may have even more of an advantage over the 
haplotype and SIMPle models when the true 
variant is a single SNP or there are multiple hap-
lotypes that influence a quantitative trait. Tests 
based on either the haplotype or SIMPle model 
parameter estimates will be less efficient due to 
the variability induced by unknown phase, unlike 
those tests based on estimates from the single-
SNP and joint models. The extent of the potential 
loss in power for the haplotype and SIMPle 
models will depend in part on the extent of LD 
among the SNPs included in the haplotype and 
the associated precision in haplotype frequency 
estimates. Clayton et al. (2004) found that in 
the dichotomous trait setting, for regions of high 
LD, the difference in power for haplotype tests 
of association between the phase known and 
phase unknown was modest.

We have investigated the power of the omni-
bus F-test for several linear models that might be 
used to test for association between a genomic 
region and a quantitative trait. We found that 
there is no one model that has best power across 
all underlying genetic mechanisms for influenc-
ing the trait, although the joint model that did 
not require phase information was almost always 
as powerful as the most powerful model across 
the scenarios that we considered. This is worth 
noting as the choice of a modeling strategy is 
often based, in part, on ease of implementa-
tion and interpretation. The joint and interaction 
models are generally more easily interpreted, 
and are are simple applications of widely known 
model parameterization strategies, as compared 
with the SIMPle and haplotype models. Finally, 
these results suggest that investigation of a 
model selection paradigm is warranted, as dis-

cussed and implemented by Conti and Gauder-
man (2004) for a qualitative trait.
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