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Constant re-evaluation of social affiliation is known to cause populations of individu-
als with different predetermined affiliation preferences to diverge into different net-
work structures. In this study, rather than assigning to each individual a fixed affiliation 
preference, held throughout the duration of the dynamic network evolution, individu-
als were allowed an initial “learning period” during which they compared their own 
relative success, using each of three strategies, at maximizing their social status under 
three different metrics. Based on the outcomes from this learning period, individu-
als then chose one particular strategy. The organizational success and stability of the 
resulting populations was seen to be higher than those of the populations of individuals 
whose behaviors were predetermined. This indicates that individual-level evaluation 
and strategy choice in social affiliation preferences can yield strong benefits to the 
organizational success of the population as a whole.

Introduction

The evolution of a network has been the focus 
in various fields of study ranging from sociol-
ogy (Snijders 1997, Doreian 2006), computer 
science (Huberman & Adamic 1999, Vázquez 
et al. 2002), physics (Réka & Barabási 2002, 
Dorogovtsev & Mendes 2003, Pastor-Satorras 
& Vespignani 2004) and ecology (Altizer et al. 
2003, Fefferman & Ng 2007). A general simi-
larity in these studies is that individuals, be it 
humans, web pages, social insects or otherwise, 
are represented by vertices in a network and 
links exist between pairs of these vertices if 
there is sufficient physical contact or if they are 
connected at a more abstract level (e.g. links 
between web pages).

To examine the role of individual choice in 
the organizational success of dynamic networks 

Fefferman and Ng (2007) experimented with 
social networks comprised of a fixed number of 
individuals, where each individual consistently 
re-evaluates its set of existing social affiliations 
according to one of three centrality measures 
borrowed from social network theory (Freeman 
1979, Wasserman & Faust 1994). These three 
measures, betweenness, closeness and popular-
ity were chosen to represent the ability of an 
individual to assess the social status of its affili-
ations at both a basic (closeness and popularity) 
and a more complicated/evolved (betweenness) 
levels. In this study, the overall organizational 
success of the population was measured in terms 
of these same three measures. Besides homoge-
neous populations where every individual had 
the same type of affiliation preference, a het-
erogeneous population, where each of the three 
affiliation preference was held by approximately 
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one third of the population, was also considered. 
This heterogeneous model was chosen to rep-
resent diversity in social preference, potentially 
due to genetic mutations directly altering the 
individual’s preference measure, or alternatively 
due to phenotypic plasticity in the expression of 
an individual’s affiliation preference.

In the context of social evolution, an indi-
vidual’s affiliation preferences and resulting 
affiliation networks can affect multiple scales 
of organizational success ranging from local, 
individual-level centrality, to overall, popula-
tion-level structures. Building upon the hetero-
geneous population model of Fefferman and 
Ng (2007), the work presented here introduced 
an initial period of “learning” into the dynamic 
affiliation process. During this initial period, 
each individual was able to “remember” the 
change in its centrality measure (for all three 
types) and, based on that information, compute 
which affiliation strategy resulted in the largest 
average increase to its own centrality measure 
over the duration of the learning period. In this 
way, these studies examined whether or not the 
ability of an individual to choose its affiliation 
preference, rather than adhere to a predetermined 
strategy (as in Fefferman & Ng 2007), can 
significantly impact stability and organizational 
success of the population.

Further, given individual choice, it is pos-
sible that the organizational success of a popu-
lation would be maximized under conditions 
in which all individuals chose uniformly, pro-
ducing a relatively homogenous population by 
voluntary consensus. If this were the case, we 
would expect that the evolution of novel affili-
ation strategies would be difficult under any 
circumstances of intense selective pressure to 
maximize organizational success. On the other 
hand, should group-level success be maximized, 
or equivalently maintained, in cases in which 
individual choices did not concur, then even 
scenarios of intense selective pressure could be 
expected to produce variation in genotypically 
determined social affiliation behaviors.

Methods

The three social evaluation measures discussed 

here are identical to those previously described 
(Fefferman & Ng 2007), where readers are 
referred to for precise definitions of various 
social network theory terminologies used. Also 
as mentioned in Fefferman and Ng (2007), the 
use of betweenness, closeness and popularity as 
the three measures and affiliation preferences 
was not meant to be definitive or exhaustive. 
They merely represent a diverse set of measures 
through which we have begun to investigate the 
complex problem of social network dynamics 
and further work in this area, including expan-
sion to a broader variety of social network cen-
trality measures, will certainly be needed.

Building on the notations already defined 
in the aforementioned article, a population of n 
individuals with directed relationships is rep-
resented by a digraph G with vertices V = 
{v1, ..., vn}. The directed graph resulting from G 
after t time steps of affiliation shifts is denoted 
by Gt. The Popularity (Closeness and Between-
ness, respectively) measure of vertex vi in Gt is 
denoted by  (  and , respectively) 
while the population-wide Popularity (Closeness 
and Betweenness, respectively) measure of Gt is 
denoted by P(Gt) (C(Gt) and B(Gt), respectively). 
A vertex that prefers Popularity (Closeness and 
Betweenness, respectively) as a measure of 
social affiliation is said to be ‘a P- (C- and B-, 
respectively) vertex’, or else is ‘of type P’ (C and 
B, respectively).

For all experimental models (see Table 1), 
the vertex affiliation preference for each vi was 
determined at the outset of computation. With 
the exception of experiment 5, an individual 
assigned a particular preference would keep 
that preference throughout the entire simula-
tion. Each vertex began with affiliations to five 
other randomly chosen vertices and, in each 
time step would evaluate the centrality of each 
of its five out-neighbors, then replace the two 
with the lowest measure (according to its affili-
ation prefence) at random from the rest of the 
population. (For the details of the process of re-
evaluating and changing its set of out-neighbors, 
see Fefferman & Ng 2007). Experiments 1 to 3 
represent populations with homogeneous affili-
ation preference, while experiment 4 models a 
population with approximately 1/3 of the verti-
ces of each type.
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To model a population in which individuals 
go through an initial phase of “learning”, where 
affiliation preferences can be changed from one 
time step to another, a digraph G from experi-
ment 5 begins with approximately 1/3 of the 
vertices of each type and then each vertex keeps 
track of the change in its centrality measure cor-
responding to its affiliation preference for that 
time step during the first twenty time steps of the 
iteration. More precisely, suppose vi is initially 
assigned to be a P vertex with popularity meas-
ure  at time step 1. The largest popularity 
measure among all vertices of type P during the 
current time step

 

is also recorded. After vi, as well as other ver-
tices, have changed their affiliations according 
to their respective preferences,  and  
are computed at time step 2. The change in vi’s 
popularity measure from time step 1 to 2, scaled 
respectively by  and  is computed as

 .

Vertex vi then randomly chooses its affilia-
tion preference before changing its affiliations 
according to this new preference at the end 
of time step 2. The change in vi’s centrality 
measure corresponding to this new preference 
is again computed and recorded at time step 3. 
Similar computations are performed for each 
vertex and their respective affiliation preferences 
from time steps 1 through 20, resulting in the 
computations of  (respectively ) 
for vertex vi at time steps t where vi is of type C 

(respectively B). At time step 21, each vertex vi 
chooses an affiliation preference permanently for 
the remainder of the iteration by comparing the 
values of ,  and  averaged 
over those time steps t between 1 to 20 where 
vi was a vertex of that particular type. In other 
words, if ,  and  are the number of times vi 
is a type P, C or B vertex respectively during the 
first 20 time steps, we calculate

 

for X = {P,C,B} where the summation in the 
numerator is summed over all such t between 1 
and 20 where vi was of type X. In the event that vi 
was never a type X vertex during the first 20 time 
steps,  was set to be zero. Vertex vi’s per-
manent affiliation preference is determined by 
choosing the preference with the largest .

At each time step t, in all experimental 
models, P(Gt), C(Gt) and B(Gt) were computed. 
Each model was run for 200 time steps in order 
for the P(Gt), C(Gt) and B(Gt) values to stabilize. 
For each of the 5 experiments, we performed 
Monte Carlo simulations with 100 iterations to 
ensure accuracy.

Due to the stochastic nature of experiment 
5, each Monte Carlo iteration of the experiment 
resulted in slightly different compositions of 
vertices of each type. In order to investigate the 
effect of these different compositions of verti-
ces on the overall network centrality measures, 
and how they compared with those previously 
reported (Fefferman & Ng 2007, reproduced 
here as experiments 1 to 4), the 100 Monte Carlo 
iterations of experiment 5 were divided into two 
classes. First, the 9 correlation coefficients were 
computed for each network centrality measure 
(Betweenness, Closeness and Popularity) and 

Table 1. The different experiment models.

experiment Vertex Total number Number of B Number of c Number of P
 affiliation of vertices vertices vertices vertices
 preference

 1 Betweenness 100 100 0 0
 2 closeness 100 0 100 0
 3 Popularity 100 0 0 100
 4 Heterogeneous 100 33 34 33
 5 Heterogeneous 100 Varies Varies Varies



444 Ng • ANN. ZOOL. FeNNIcI Vol. 45

each of the number of each type of vertices (B, 
C and P) there are in the network for a particular 
Monte Carlo iteration. Thus for each centrality 
measure-vertex type pair, there were one hun-
dred data points on which to perform a simple 
regression using the model y = A + Bx where y 
is the network centrality measure and x is the 
number of vertices of a particular type.

Each Monte Carlo iteration i can then be 
given an index

 V(i,x) = Rb,xnb + Rc,xnc + Rp,xnp

for each centrality measure x = B,C,P where in 
the equation above, Rb,x (Rc,x and Rp,x, respec-
tively) is the correlation coefficient between the 
network centrality measure x and the number 
of vertices of type B (C and P, respectively) 
in Monte Carlo iteration i. For each centrality 
measure x, the 50 Monte Carlo iterations with 
the highest V(i,x) were grouped into experi-
ment 5H, while the remaining 50 iterations were 
grouped together as experiment 5L. This divi-
sion in grouping was performed for experiment 
5 only, since only in this experimental scenario 
was it pertinent to examine the possible effect 
the number of individuals of each affiliation 
preference type had on the total network cen-
trality. Finally, the network centrality measures 
at each time step t were averaged over all 50 
iterations in each of the two groups 5H and 5L to 
produce a representative value for experiment 5 
itself at each t.

Results

In experiment 5, though the population was ini-
tially equally divided among the three types of 
affiliation preferences, after the end of the learn-

ing period, there were significantly more type C 
vertices than either type B or P vertices while the 
number of type B and P vertices were not sig-
nificantly different (see Table 2). This illustrates 
that within a population with non-uniform affili-
ation preferences, significantly more vertices 
experienced the greatest increase in their close-
ness centrality measure during the 20 time-step 
learning period, during which they changed and 
evaluated the success of their affiliation strate-
gies. This might also imply that the closeness 
centrality measure of a vertex is least dependent 
on (and thus more robust to) the affiliation pref-
erences of other vertices in the population. This 
difference in behavior of a C vertex (and conse-
quently that of a C population) as compared with 
that of both the B and P vertices (B and P popu-
lations, respectively) mirrors the different result-
ing network structure that a C population has 
as compared with both the B and P populations 
(see Fefferman & Ng 2007). For example, the C 
population was observed to attain little organi-
zational success when success was measured in 
terms of popularity whereas B and P populations 
converged to somewhat similar structures with 
high network popularity measure.

For both network betweenness and closeness 
centrality measures, the number of C vertices 
was seen to be positively correlated with the 
network measure while the number of B and 
P vertices correlated negatively with the net-
work measure (see Table 3). This behavior was 
reversed when considering the network popu-
larity measure (see Table 3). Furthermore, the 
correlation coefficients were generally larger (in 
magnitude) when considering network popular-
ity measure than were those for the other two 
network measures.

Also from Table 3, we see that only the 
number of type C vertices was positively cor-

Table 2. Mean number of vertices of each type after each vertex chooses its permanent affiliation preference. For 
each pair-wise post test, the inequality denotes which type of vertices has significantly more than the other, the 
number in each bracket is the p value for that pair-wise test.

p value for 3-way test Number of B vertices Number of c vertices Number of P vertices

 30.79 36.6 32.61
  Dunn’s Post Test
  < 0.0001 c > B (< 0.001) B ≈ P (> 0.05) c > P (< 0.05)
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related with the network betweenness measure. 
This observation is further supported by the 
homogeneous populations consisting of type B 
and P individuals (experiments 1 and 3, respec-
tively) have the lowest betweenness centrality 
(see Fig. 1A). A homogeneous population of type 
C-individuals (experiment 2) attained approxi-
mately similar network betweenness centrality 
than did a population with equal proportion of 
individuals of each type (experiment 4). Com-

paring both experiments 5L and 5H with experi-
ment 4, all three experiments initially showed 
nearly equal network betweenness measures but 
rapidly diverged, with experiment 5H attaining 
a consistently higher centrality measure than 
experiment 4 (see Fig. 2A). However, though 
experiment 5L initially also showed a higher net-
work betweenness measure than experiment 4, 
after the hundredth time step, experiment 4 had 
the greater network measure. Experiment 5L had 

Table 3. correlation coefficients from regressing the number of vertices of each type with each network central-
ity measure averaged over the last 20 time steps (180 to 200). The number in the brackets represents p from the 
simple regression.

 Number of B vertices Number of c vertices Number of P vertices

Network betweenness measure –0.162 (0.106) 0.438 (< 0.0001) –0.431 (< 0.0001)
Network closeness measure –0.335 (0.0006) 0.683 (< 0.0001) –0.597 (< 0.0001)
Network popularity measure 0.621 (< 0.0001) –0.966 (< 0.0001) 0.711 (< 0.0001)
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Fig. 1. Population-wide organizational success 
measured by (A) betweenness, (B) closeness and 
(C) popularity. As predicted by correlation coef-
ficients shown in Table 3, vertices with different 
affiliation preferences have different effect on the 
network organization success under different meas-
ures. For example, considering network between-
ness measure (panel A), homogeneous populations 
of type B or P causes the network measure to 
decrease rapidly while a homogeneous population 
of type c and all the heterogeneous populations 
stabilizes at a much higher network measure. On 
the other hand, for network popularity measure, het-
erogeneous populations only achieves about 60% 
of the success attained by homogeneous popula-
tions of both type B and P (panel C).
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a lower proportion of type C vertices (an average 
of 32.7 out of the total network size of 100) and 
a higher proportion of type B and P vertices (an 
average of 32.7 and 36.4, respectively) than in 
the total averages over all experiments contrib-
uting to Experiment 5 as a whole (yielding an 
average of 30.8, 36.6, and 32.6 vertices for types 
B, C and P, respectively). This skew caused the 
network betweenness measure to decrease after 
the twentieth time step (after all individuals 
have fixed their affiliation preference), much like 
experiments 1 and 3, (although not to the same 
degree) where the high proportion of type B or 
P vertices caused a decrement to the network 
betweenness measure.

The organizational success of the population 
under the closeness metric exhibited correlations 
between the number of vertices of each type and 
the network measure which were all larger in 
magnitude (either positively or negatively) than 
those observed for the betweenness measure 
discussed above (see Table 3). The number of 
type C vertices was again seen to be positively 
correlated with the network closeness measure 

and, as a result, experiment 2 had the highest 
level of organizational success (see Fig. 1B). As 
predicted by the negative correlation between 
the number of type B or P vertices and the net-
work measure, experiments 1 and 3 achieved 
the lowest level of success. Finally, the network 
popularity measure was observed to behave in 
exactly the opposite manner: experiments 1 and 
3 achieved the highest level of organizational 
success while experiment 2 had the lowest net-
work measure.

Interestingly, although experiment 5H even-
tually converged to a network popularity meas-
ure higher than that attained by experiment 4, it 
did not achieve this until about the 120th time 
step (see Fig. 2C). This was different from what 
was seen when network success was measured in 
terms of closeness (see Fig. 2B), where experi-
ment 5H began with a higher organizational suc-
cess and consistently maintained this advantage 
over experiment 4 throughout the 200 time steps. 
When network success was measured in terms 
of betweenness, experiment 5H also generally 
achieved higher organizational success than 
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Fig. 2. Population-wide organizational success 
measured by (A) betweenness, (B) closeness and 
(C) popularity. Only heterogeneous populations are 
shown, and in all three different measures of suc-
cess, experiment 4 is always at a level in between 
experiment 5H and 5L.
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experiment, with the only exceptions occurring 
during the initial 20th time step and the 160th 
time step (see Fig. 2A).

Interestingly, the incorporation of a learning 
period, and the concomitant flexibility of indi-
viduals being allowed to make their own choice 
of affiliation strategy (experiment 5), produced 
no substantially different results in the organi-
zational success of the network measured under 
either the Betweenness or Closeness metrics, and 
in fact caused a substantial decrease in the organ-
izational success as measured by Popularity as 
compared to those levels of success attained in 
an evenly heterogeneous population with no 
learning period (experiment 4) (see Fig. 1).

Since each independent realization of experi-
ment 5 yielded a different distribution of individ-
ual types, the overall organizational success may 
have been the average of very separate and dif-
ferent results of particular distributions of prefer-
ence types (unlike the results of any of the other 
experiments). Therefore, to examine the relative 
success of populations with individual learning 
as compared with that in which affiliation prefer-
ences were determined from the beginning, the 
average success of 5H and 5L were also exam-
ined. Under all three measures, the network suc-
cess achieved after convergence by experiment 4 
was always smaller than that attained by experi-
ment 5H but was larger than experiment 5L (see 
Fig. 2). However, the benefits of the learning 
period were seen to be most advantageous when 
considering the network closeness measure, 
resulting in an 8.14% increment in total network 
centrality. This was in contrast to the 0.85% and 
3.46% attained under the network betweenness 
and popularity measures respectively.

Discussion

Experiments 1 to 3 examined populations in 
which individuals all employed the same affili-
ation strategy. In experiment 4, we investigated 
the relative successes of heterogeneous popula-
tions, in which a single population included 
some individuals with each of the three affilia-
tion strategies, determined before the initiation 
of computation and held constant throughout the 
experiment. These populations and their sub-

sequent organizational successes under each of 
the three measures therefore provided bases for 
comparison against which we were able to com-
pare the results from experiment 5, in which 
individuals were allowed the learning period 
before selecting their own affiliation strategy.

Although no single affiliation strategy was 
chosen by all individuals within the entire popu-
lation after the learning period, there were sig-
nificantly more individuals choosing closeness as 
their affiliation strategy than there were choosing 
either popularity or betweenness. With the appro-
priate mixture of individuals with different affili-
ation strategies (experiment 5H), the population 
was able to attain a higher level of organizational 
success than was achieved by the neutral model 
of randomly assigning equal proportions of indi-
viduals to each of the three strategies (experiment 
4). Given a choice of which affiliation preference 
to adopt, individuals within the same popula-
tion not only made different decisions, but if 
the organizational success of the population was 
measured after the network structure converged, 
it was most successful when the population self-
distributed into a mix of different individual types 
(experiment 5H, see Fig. 2). Interestingly, for 
network organizational success measured using 
betweenness, although the number of C vertices 
was the only one positively correlated with the 
network measure (see Table 3), a homogeneous 
population of C vertices did not attain the highest 
organizational success (experiment 2, see Fig. 
1A). This leads to the intriguing notion that there 
really could be “too much of a good thing”: to 
achieve the highest possible levels of population-
level success, a population would require a suffi-
cient diversity of preference types to complement 
the C vertices before achieving maximal popula-
tion-level success.

Finally, the introduction of a learning period 
yielded only a barely observable benefit under 
the closeness measure, and in fact effected a 
small decrease in success under betweenness 
(see Fig. 1), The magnitude of these alterations 
in success was seen to depend upon the measure 
used, and was also clearly dependent on the dis-
tribution of preference types within the popula-
tion (see Fig. 2).

While diversity in individual behavior in a 
population does, itself, have a significant impact 
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on the organizational success of the population, 
under the closeness metric of success, we see that 
a learning period improved the overall success of 
the population over the benefits conferred merely 
from diversity in preference types. Similarly, both 
predetermined heterogeneous preference popula-
tions and populations with learning achieved sim-
ilar levels of success under the betweenness meas-
ure. Building on the investigations of Fefferman 
and Ng (2007), these results imply that the evolu-
tion of behavioral plasticity, rather than the genetic 
predetermination of social behaviors, could have 
been actively selected for if the operative pressure 
for population-level success was betweenness or 
closeness. Under selective pressure to maximize 
popularity, we can infer that individual behavioral 
phenotypes would have been actively selected 
against on a population level.

These measures are only three potential met-
rics for both individual- and population-level 
success, but the implications for the evolution 
of individual choice and social complexity are 
far broader. Together, these results provide a 
first glimpse into the possible role of behavioral 
plasticity, individual choice and the evolution of 
social complexity.

The need for simulation methods in 
dynamic network modeling

The study of individual behaviors and how these 
behaviors can affect the evolving and emer-
gent network structure of a population is very 
complex, even for a population of small size. 
Analytically tractable models would necessar-
ily involve the making of simplifying assump-
tions involving ‘average behaviors’ which would 
render the models unrealistic. The assumption 
of these averages would make impossible inves-
tigations into experimentally learned behaviors 
based upon stochastic events, such as those 
investigated within this paper. Since it is usually 

equally impossible for laboratory based biolo-
gists to empirically manipulate the behaviors of 
real-life populations, simulation methods such 
as those described in this study provide a unique 
opportunity for empirical investigation into the 
effects of learning and behavior on social net-
work evolution.
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