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The inference of the interactions between organisms in an ecosystem from observa-
tional data is an important problem in ecology. This paper presents a mathematical 
inference method, originally developed for the inference of biochemical networks in 
molecular biology, adapted for the inference of networks of ecological interactions. 
The method is applied to a network of invertebrate families (taxa) in a rice field.

Introduction

Ecology and systems biology

Biological organisms can be studied at many 
levels, from proteins and nucleic acids, to cells, 
to individuals, to populations and ecosystems, 
and finally, to the biosphere as a whole. Ecol-
ogy studies the relationships of organisms with 
each other and with their physical environment. 
Although ecology focuses on the higher levels 
of the organization of life, many sub-disciplines 
have evolved, integrating many of these differ-
ent levels of organization (e.g. molecular ecol-
ogy, systems ecology) for a holistic study of 
organisms. Systems biology is also based on the 
premise that an understanding of the behavior 
of biological systems at each level of organiza-
tion is achieved by careful study of the complex 
dynamical interactions between the components. 
It is not surprising then that interesting paral-
lels can be found in problems pertaining to both 
disciplines, opening the possibility of adapting 
some mathematical methods developed for the 

study of biological systems in systems biology to 
the study of ecological systems. One such prob-
lem is that of inference (or reverse-engineering) 
of networks, which is the central focus of this 
paper.

Mathematical modeling and simulation in 
ecology

Modeling and simulation have proven to be 
powerful tools in many disciplines of ecology; 
some examples of this are the Lotka-Volterra 
competition models (Townsend et al. 2002) and 
nonlinear dynamical models in population ecol-
ogy (Costantino et al. 1995).

There are many ways in which one can 
classify mathematical models, including whether 
they give a structural and/or dynamical descrip-
tion of the system. The structural description of 
a network (known also as network topology or 
static model) provides a description of the ele-
ments in the system and which elements interact 
with each other (given through causal or correla-
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tion relationships among entities in the system, 
for example) where sometimes a weight can be 
given to such relationships; a common example 
of these static models is that of food webs. Both 
in ecology and systems biology, the study of 
network topology is important. For instance, the 
search for network topology motifs (Camacho et 
al. 2007) is quite similar to the focus on unusu-
ally common local topological features in the 
connectivity graph of gene regulatory networks 
(Alon 2007). A dynamical description (dynami-
cal models) of a network provides a description 
of the nature of individual relationships, that is 
to say, a description of how the systems evolve 
from a given state; Lotka-Volterra differential-
equation models are one example of this type 
of models. Once these models have been devel-
oped, they can be simulated and visualized, pro-
viding an experimental playground for in silico 
study of scenarios.

Reverse-engineering as modeling 
framework

Within the context of systems biology, impor-
tant classes of networks are biochemical and 
gene regulatory networks constructed from time 
course data such as DNA microarray. Several 
reverse-engineering methods have emerged 
for the construction of network models from 
large-scale experimental measurements (Price 
& Shmulevich 2007) and an understanding of 
characteristics of the topology of such networks 
(Alon 2007) as well as the dynamics; see e.g., 
Stolovitzky et al. (2007) for a recent survey of 
reverse engineering algorithms.

Reverse-engineering methods within the 
context of ecology

Modeling and simulation of networks of inter-
actions between species in ecosystems helps 
to understand common patterns (Abrams et 
al. 1996), to assess their development (Perez-
Espana & Arreguin-Sanchez 2001), to predict 
the effects of human impacts among natural 
systems and to prevent biodiversity loss (Dunne 
et al. 2002), etc. When more than a few species 

are involved in an ecosystem, the construction of 
networks of ecological interactions is challeng-
ing and mathematical and statistical are powerful 
tools for their inference using sampled data (see 
e.g., Zhang (2007)).

In the subsequent sections we describe one 
reverse engineering method, which uses time 
course sampled data for all nodes in the network 
and returns a static model of the network that 
matches the observed data. Its characteristics 
are that it uses a finite number of values for each 
variable and discrete time. The initial model 
paradigm was published by Laubenbacher and 
Stigler (2004) and has been refined since then 
e.g., by Jarra et al. (2007); then we describe how 
the reverse engineering method can be adapted 
to rebuild a network of ecological interactions.

The method

Inference method to construct the static 
network

The network inference method (Jarrah et al. 
2007) was developed originally for the inference 
of biochemical networks, such as gene regula-
tory networks, from DNA microarray and other 
molecular data sets. It uses techniques from 
symbolic computation and algebraic combinator-
ics, complementing an earlier network inference 
method using techniques from computational 
algebra (Laubenbacher & Stigler 2004).

The goal of the inference algorithm is to 
output one or more most likely static networks 
for a collection x1, …, xn of interacting ecological 
units (species, families, etc.), which we will refer 
to as variables. The state of an ecological unit 
can represent the number of individuals present. 
That is, each variable xi takes values from the 
finite set X = {0, 1, 2, …, m}. A static network 
in this context consists of a directed graph, 
whose n nodes are the ecological units x1, …, xn. 
A directed edge xi → xj indicates an ecological 
interaction that can be interpreted as indicating 
for example, that the survival of xj depends on 
xi. The inference algorithm takes as input one 
or more time courses of observational data. The 
output is a most likely network structure for 
x1, …, xn that is consistent with the observational 
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data. It is worth emphasizing that the network is 
constructed from the frequency of the supporting 
observations alone, in a way that is unbiased by 
prior knowledge or expected results.

The notion of consistency with observational 
data makes the assumption that the network 
of interacting ecological units x1, …, xn can be 
viewed as a dynamical system that is described 
by a function f: Xn → Xn, which transforms an 
input state (s1, …, sn), si in X, of the network into 
an output state (t1, …, tn) at the next time step. A 
directed edge xi → xj in the static network of this 
dynamical system f indicates that the value of xj 
under application of f depends on the value of xi. 
A directed graph is a static network consistent 
with a given time course s1, …, sr of states in Xn, 
if it is the static network of a function f: Xn → Xn 
that reproduces the time course, that is, f(si) = 
si + 1 for all i.

The algorithm in Jarrah et al. (2007) computes 
ALL minimal static networks consistent with the 
given data set. Here, a static network is minimal 
if, whenever an edge is removed, the resulting 
graph is no more a wiring diagram consistent 
with the data. This process is done one variable 
at a time, that is, by computing the edges adja-
cent to individual vertices one at a time, rather 
than the diagram as a whole. Furthermore, for a 
given vertex, we use an efficient combinatorial 
parametrization of the possible edge configura-
tions, rather than by an enumerative method. The 
next step is to define a probability distribution 
on the space of minimal possible edge sets for 
each vertex that permits the selection of a most 
likely wiring diagram for a given edge. Since the 
combinatorial description of the space allows the 
actual computation of this measure on the whole 
space, this method has the advantage over other 
methods of choosing the most likely model from 
the whole space. Heuristic learning methods 
such as Bayesian network inference typically 
proceed from a random initial choice of network 
and find a local minimum of a suitably chosen 
scoring function. Thus, typically only a small 
part of the entire space is explored. We illustrate 
the algorithm with a small example.

Example. Let’s assume that we are given the 
time course data s1 = (1, 0, 0, 2), s2 = (1, 2, 2, 1), 
s3 = (0, 2, 1, 1), s4 = (1, 2, 1, 2), s5 = (2, 2, 0, 2), s6 
= (0, 1, 1, 2) representing the number of individ-

uals of four given species x1, …, x4, where each 
of the species has 0, 1, or 2 individuals. Applying 
the above algorithm to this data set results in the 
following output:

	 F1 = {{x1, x3}, {x1, x2, x4}, {x2, x3, x4}}	 (1)
	 F2 = {{x1}, {x2, x3}}	 (2)
	 F3 = {{x1, x3}, {x1, x2, x4}, {x2, x3, x4}}	 (3)
	 F4 = {{x1, x3}, {x2, x3}, {x1, x2, x4}}	 (4)

This output is to be interpreted as follows: 
For ecological unit x1, possible incoming con-
nections (F1) are either x1 and x3 or x1, x2, and x4, 
or x2, x3, and x4. These three sets are minimal, in 
the sense that the data cannot be explained by 
choosing a subset of the three possibilities. The 
other rows are interpreted in a similar way. One 
can now “mix and match” possible incoming 
edge sets for the species and obtain in this way 
all possible wiring diagrams consistent with the 
given data set.

With the use of this example, we are able to 
emphasize that the term minimal static network 
does not imply that a graph with the least amount 
of edges is constructed; as we can see for the eco-
logical unit x2 there are two choices for its eco-
logical interactions (interaction with x1 or x2 and 
x3) for which the choice of interactions of x2 with 
x2 and x3 will return a graph with one more edge 
than the choice of interaction between x2 and x1.

Model selection

In order to select a most likely static network 
among the potentially very large number of pos-
sible ones, one defines a probability distribution 
on the space of all possible static networks for 
a given data set, which we briefly explain here. 
The model selection method first scores each of 
the variables with a formula that is based on the 
proportion of sets in which it appears. Then it 
scores sets based on the scores of the variables 
in them. To be precise, suppose the algorithm 
outputs the possible variable sets F1, …, Ft, each 
a subset of the set of all variables x1, …, xn. For 
each s = 1, …, n, let Zs be the number of sets Fi 
that contain s elements. For each i = 1, …, n, let 
Wi(s) be the number of sets with s elements that 
contain xi. Then define a variable score:
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Using this score, we assign a score T(Fj) to 
every set Fj in the output by taking the product of 
the variable scores S(xi) for all xi in Fj. Normal-
izing by the sum of all scores T(Fj), we obtain a 
probability distribution on the set of all Fj.

With the help of this probability distribu-
tion, we can now choose the set(s) with highest 
probability as the most likely static networks. In 
the case of a tie, a final selection will have to be 
made based on biological considerations.

Example

We apply this measure to the data set in the 
example above, focusing on specie x1. Then

	 F1 = {x1, x3}, F2 = {x1, x2, x4}, F3 = {x2, x3, x4},

and we obtain the following variable scores:

S(x1) = 1/1 + 1/(2 • 3) = 7/6, S(x2) = 2/(2 • 3) = 1/3,
S(x3) = 1/1 + 1/(2 • 3) = 7/6, S(x4) = 2/(2 • 3) = 1/3.

Finally, the sets are scored as follows:

	 T(F1) = (7/6)(7/6) = 49/36,
	 T(F2) = (7/6)(1/3)(1/3) = 7/54,
	 T(F3) = (1/3)(7/6)(1/3) = 7/54.

Based on these scores, we choose F1 as the 
most likely set of incoming connections for x1. 
Carrying out a similar computation for the other 
two variables results in a complete, most likely 
static network for the given data set.

An application

In order to illustrate an application of the reverse 
engineering method introduced, we will use pub-
lished results on a network of ecological inter-
actions (Zhang 2007) in order to evaluate our 
method’s performance. In this work, a network 
inference method is introduced and validated 
with the use of a set of invertebrate data sampled 
in a rice field (Zhang et al. 2004). There, a total 

of 75 invertebrates families (or taxa) and 60 
samples are considered.

For the purpose of the present paper we focus 
on a subnetwork from Zhang’s, corresponding 
to the invertebrate family Culicidae (see Zhang 
2007: fig. 2), which consists of 9 invertebrate 
families among which, according to Zhang, 16 
ecological interactions exist; we restrict to only 
20 (of the 60) samples for these 9 taxa (see Table 
1). For model selection, we considered the inter-
actions with scores (as described in the previous 
section) above 0.50.

The network obtained with the Jarrah et al. 
(2007) method, with also 16 ecological interac-
tions, is depicted in Fig. 1. All the biological 
families are linked to the rice field, but they 
do not correspond to the category of ecologi-
cal interactions. Using only a third of Zhang’s 
(2007) data to build the network, we found 12 
of the 16 expected interactions. One of the miss-
ing interactions corresponds to the one between 
the biological families Culicidae and Dryinidae, 
which appear as one of the highest scored inter-
actions but not above 0.50; instead, we obtain 
the ecological interaction between the families 
Dryinidae and Carabidae; one possible explana-
tion for the existence of this interaction is that, 
Carabidae (as part of the Coleopteran insects) 
may depict with the Dryinidae a parasite–para-
sitoid interaction.

On the other hand, we observe that the total 
number of ecological interactions for this net-
work agrees with that of Zhang’s (total of 16), 
and, therefore, the ratio between the total number 
of interactions and the number of biological fam-
ilies is preserved (16/8 = 2).

Discussion

The problem of inferring a network of interac-
tions in a biological system from sampled data 
appears in several different, apparently disparate, 
contexts. This paper focuses on two such con-
texts, the inference of ecological interactions in 
an ecosystem and the inference of biochemical 
networks in systems biology. We have shown 
that a method designed for this purpose in one 
field can be applied profitably in the other one. 
Using a data set consisting of a time course of 
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Fig. 1. Solid lines represent relationships found in 
Zhang (2007) and obtained  by us. Dashed lines repre-
sent relationships found by us but missing from Zhang 
(2007). White lines represent relationships found in 
Zhang (2007) but not found by us.

Table 1. Sampling data of rice invertebrates as shown in Zhang (2007). The numbers set in boldface we consid-
ered for 9 families (taxa) for the Culicidae subnetwork; these data (20 samples) represent 30% of the data originally 
used in Zhang (2007) to infer such subnetwork.

	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20

Elateridae	 2	 0	 4	 0	 0	 1	 0	 0	 2	 1	 0	 0	 0	 3	 0	 1	 0	 0	 1	 0
Culicidae	 3	 4	 0	 0	 1	 0	 6	 4	 3	 0	 5	 5	 5	 1	 0	 2	 4	 1	 10	 0
Coenagrionidae	 0	 0	 0	 0	 0	 0	 0	 1	 2	 0	 0	 0	 0	 0	 0	 0	 2	 0	 0	 0
Aleyrodidae	 0	 0	 0	 0	 0	 0	 0	 1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0
Mymaridae	 0	 0	 0	 1	 1	 0	 0	 0	 1	 0	 0	 0	 0	 0	 1	 0	 0	 0	 1	 0
Chloropidae	 0	 0	 0	 1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 1	 0	 0	 1	 1	 0
Grylliade	 1	 0	 4	 5	 2	 6	 0	 2	 4	 2	 4	 3	 1	 0	 2	 3	 5	 0	 0	 2
Araneidae	 1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 1	 0	 0	 0	 0	 1	 0
Theridiidae	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 1	 0	 0	 0	 0	 0	 0
Baetidae	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 1	 0	 1	 0
Hydrophilidae	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 1	 0	 0	 0	 0	 0
Blattellidae	 0	 0	 2	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 1	 0	 0	 0	 1	 0
Braconidae	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 1	 0	 0	 0	 1	 0
Cicadellidae	 2	 1	 0	 5	 0	 2	 1	 0	 5	 1	 1	 1	 0	 1	 3	 1	 0	 1	 2	 0
Miridae	 3	 2	 0	 1	 0	 0	 0	 1	 0	 0	 1	 0	 0	 0	 0	 1	 0	 0	 2	 0
Tettigoniidae	 1	 0	 0	 0	 0	 1	 0	 0	 0	 0	 0	 1	 0	 0	 0	 1	 1	 0	 0	 0
Linyphiidae	 2	 1	 1	 0	 3	 0	 3	 1	 0	 4	 1	 1	 3	 0	 3	 2	 2	 1	 2	 4
Ceratopogonidae	 0	 2	 0	 0	 1	 0	 1	 0	 0	 0	 0	 0	 1	 0	 0	 0	 0	 0	 1	 1
Chironomidae	 0	 2	 0	 0	 0	 3	 1	 1	 2	 2	 0	 1	 2	 0	 1	 0	 0	 0	 1	 4
Encyrtidae	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 1	 0	 0	 0	 0
Cunaxidae	 1	 0	 1	 0	 0	 0	 0	 1	 0	 0	 0	 0	 0	 2	 0	 0	 1	 0	 0	 0
Drosophilidae	 0	 0	 0	 1	 0	 0	 0	 0	 0	 1	 0	 0	 1	 0	 1	 0	 0	 0	 0	 0
Dryinidae	 2	 0	 0	 0	 0	 0	 0	 1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0
Tetragnathidae	 2	 0	 0	 2	 1	 3	 4	 3	 0	 1	 4	 1	 0	 1	 0	 1	 1	 3	 3	 2
Dytiscidae	 0	 0	 0	 1	 0	 1	 0	 0	 0	 0	 0	 0	 1	 0	 0	 0	 0	 0	 0	 0
Carabidae	 1	 0	 0	 0	 0	 0	 1	 0	 1	 2	 1	 0	 0	 0	 0	 0	 1	 0	 1	 0
Entomobyidae	 2	 1	 2	 2	 0	 0	 1	 2	 0	 0	 1	 0	 0	 0	 3	 7	 0	 0	 0	 1
Hydrometridae	 0	 0	 0	 0	 0	 2	 0	 0	 0	 0	 0	 0	 0	 0	 1	 1	 0	 0	 0	 0
Hydraenidae	 0	 0	 0	 0	 0	 1	 0	 0	 0	 1	 0	 0	 0	 0	 0	 0	 0	 0	 2	 0

observations of several different species in a 
common context we have inferred a network of 
interactions between these species, represented 
by a graph whose nodes are the species and 
whose edges represent interactions. In molecular 
biology, such a representation would be called a 
wiring diagram.

Contribution of mathematical inference 
methods

One advantage of the inference method presented 
here is that it uses a sophisticated mathematical 
encoding of the entire space of possible wiring 
diagrams consistent with the data. Based on the 
selection criteria chosen, it then selects exactly 
ALL static networks that fit these criteria. In 
contrast, statistical methods for network infer-
ence, such as Bayesian networks, find an optimal 
solution through a heuristic search.
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As in molecular biology, ecological networks 
typically are dynamical systems that change over 
time. This is reflected in the fact that many math-
ematical models in ecology are dynamic, typi-
cally represented by systems of differential or 
difference equations. It would therefore be desir-
able to have a method available that infers not 
only a wiring diagram but a dynamic description 
of the system. Another advantage of the method 
presented here is that there are methods closely 
related to the one presented here which are able 
to do just that (Laubenbacher & Stigler 2004, 
Dimitrova et al. 2007). However, typically more 
data are required to be able to infer accurate 
models. Furthermore, in order to infer the causal 
relationships among dynamic variables it is very 
useful to be able to perturb the system in differ-
ent ways. In molecular biology perturbations are 
typically done by “knocking out” genes, in gene 
regulatory networks or interfering in some other 
ways with the action mechanisms of individual 
systems variables. In ecosystems this may be 
more difficult to accomplish.

In addition to the method presented here, 
there are several other inference methods avail-
able for molecular network. A study of their use-
fulness to help solve problems in ecology would 
be of interest. For instance, several such methods 
allow the introduction of prior biological knowl-
edge into the inference process (Tsai & Wang 
2005, Cosentino et al. 2007), thereby improving 
algorithm performance.
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