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Temperate amphibians in colder regions are expected to store more energy prior to 
hibernation for successful overwintering and subsequent spring breeding. We tested 
this prediction on a capital breeding species — Rana chensinensis — using samples 
collected from 27 populations across 1200-km latitudinal (33.6–44.2°N) and 1768-m 
(112–1880 m) altitudinal gradient in northern China. Our data showed that frogs from 
colder regions (high latitude or altitude) had relatively heavier liver and fat bodies than 
those from warmer regions, but that the weight of carcasses tended to become smaller. 
The greater pre-hibernation energy reserves in colder regions could be an adaptive 
response to the longer and colder winter period, whereby meeting the energy demands 
for overwintering, and the subsequent energy requirements of reproduction in the spring.

Introduction

Energy storage plays an important role in the life 
history of temperate-zone anurans that hibernate 
in winter on land or under water and do not feed 
until spring (Koskela & Pasanen 1974, Brad-
ford 1983). Income breeding anurans feed after 
emergence and before breeding (Willis et al. 
1956, Hulse et al. 2001). In contrast, pure capital 
breeders do not feed until after breeding in the 
spring (Pasanen & Koskela 1974). Thus, anurans 
with a pure capital breeding strategy must enter 
hibernation with sufficient energy reserves not 
only for overwintering (Long 1987, Donohoe 
et al. 1998, Boutilier 2001, Pope & Matthews 

2002, Jackson & Ultsch 2010) but also for subse-
quent spring reproduction.

Although anurans can deposit energy in the 
form of lipids, proteins or carbohydrates, lipids 
may be the most important energy source (Smith 
1950, Bush 1963, Fitzpatrick 1976, Jackson & 
Ultsch 2010). Lipids are mainly deposited in 
the liver (Fitzpatrick 1976), fat bodies (Brown 
1964, Fitzpatrick 1976), and somatic tissue (Sey-
mour 1973, Fitzpatrick 1976, Whitford & Melt-
zer 1976, Morton 1981, Fournier & Guderly 
1993, Donohoe et al. 1998). By investigating the 
weights of these organs, researchers have found 
seasonal (Mizell 1965, Morton 1981, Lu 2004), 
altitudinal (Elmberg 1991, Elmberg & Lundberg 
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1991, Lu et al. 2008) and latitudinal variation 
in energy storage patterns (Pasanen & Koskela 
1974, Jönsson et al. 2009).

Considering the wide altitudinal and latitudi-
nal range (equaling to a wide temperature range) 
of habitats where temperate-zone amphibians 
occur, one would expect large variation in energy 
storage patterns both within and among species. 
Despite the importance of energy storage in life 
histories of temperate anurans, however, to date 
only a few studies on this topic, mostly restricted 
to narrow geographic gradients (Elmberg 1991, 
Elmberg & Lundberg 1991), have been made. 
A large-scale study of Rana temporaria con-
ducted shortly after hibernation, suggested that 
animals should acquire more energy towards the 
north as a risk-averse strategy when facing harsh 
and unpredictable environments (Jönsson et al. 
2009). However, large-scale studies on pre-hiber-
nation energy stores in anurans are still lacking.

The aim of this study was to investigate the 
pre-hibernation energy stores of a widely dis-
tributed temperate-zone anuran, Rana chensin-
ensis, in environmentally different populations. 
We compared the weights of the (i) liver, (ii) fat 
bodies, and (iii) carcass relative to body length in 
27 populations over a 1200-km latitudinal (33.6–
44.2°N) and 1768-m altitudinal gradient across 
northern China. We predicted that in thermally 
harsher environments with prolonged hiberna-
tion periods, energy stores will be higher.

Material and methods

Study species and sampling

Rana chensinensis is a medium-sized frog 
endemic to, and widely distributed in northern 
China (Liu & Hu 1961, Tanaka-Ueno et al. 1999, 
Xie et al. 2000, Lu et al. 2008). The frogs have a 
variable hibernation-period length (3–5 months) 
and a short breeding period (3–4 weeks; Lu 
2004). They are not active during winter and do 
not feed after emergence and before breeding; 
the species accordingly is viewed as an explo-
sive (Wells 1977) and capital breeder (Jӧnsson 
et al. 2009). The frogs begin building their body 
reserves shortly after breeding, peaking in the 
late autumn before winter hibernation (Lu 2004). 

This storage may function primarily to sustain 
individuals through the winter and enhance sub-
sequent reproductive performance in the spring 
(Lu et al. 2008).

Adult frogs (380 males, 306 females) were 
captured in the water, by hand, during daytime 
in their hibernation habitats from September to 
November 2009 according to the phenology of 
local populations to allow comparisons. These 
sampling sites (n = 27) covered a ca. 1200-km 
latitudinal (33.6–44.2°N) and 1768-m altitudi-
nal (112–1880 m) gradient (Table 1). Average 
annual air temperatures of these localities were 
obtained from local weather stations

All frogs were killed by an overdose of 
MS-222. Before dissection to obtain liver and 
fat bodies, snout–vent length (SVL) of each 
frog was measured to the nearest 0.1 mm. The 
remaining carcasses and each of the organs were 
weighed separately to the nearest 0.001 g with an 
electronic balance after being placed on water-
absorbing paper for about 5 minutes (Lu 2004). 
The ages of adult frogs were determined by skel-
etochronology (Lu et al. 2006, Ma et al. 2009, 
Chen et al. 2011).

All field and laboratory work was done under 
a license from the Wildlife Protection Law of 
China.

Statistical analyses

Differences in weights of organs among popula-
tions along mean annual temperature gradients 
were tested using linear mixed models (LMM) 
with sex, SVL, age and mean annual temperature 
included as fixed effects, and population as a 
random effect. Organ variables were ln-trans-
formed to better attain normality. All statistical 
tests were performed with the SPSS software 
(ver. 16.0) and all probabilities were two-tailed 
with α = 0.05; values presented are means ± 
standard deviations (SD).

Results

Descriptive statistics for the analyzed variables 
are shown in Table 1. In both sexes, liver and fat-
body masses were higher at lower ambient tem-
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Table 1. Means ± SDs and sample sizes (n) for the analyzed variables of Rana chensinensis populations in north-
ern China. Mean temp. = mean annual temperature, SVL = snout-vent length, CC = carcass mass, LV = liver mass, 
FB = mass of fat bodies. * Mean ages were not available for this population.

Location Altitude Mean Sex SVL CC LV FB Age n
 (coordinates) (m) temp.  (mm) (g) (g) (g) (years)
  (℃)

Nanzhao 907 10.7 F 41.1 ± 4.5 4.15 ± 1.14 0.28 ± 0.11 0.05 ± 0.03 3.0 ± 0.7 5
 (112.29°e, 33.67°N)   M 41.6 ± 2.2 5.21 ± 1.09 0.25 ± 0.08 0.06 ± 0.02 2.9 ± 0.7 7
Zhenwuding 1041 10.0 F 50.3 ± 6.0 9.01 ± 3.63 0.45 ± 0.18 0.09 ± 0.07 3.6 ± 0.5 9
 (112.29°e, 33.68°N)   M 39.3 ± 3.4 4.87 ± 1.29 0.27 ± 0.09 0.06 ± 0.03 2.9 ± 0.7 10
Wulongkou 261 13.6 F 56.0 ± 4.9 10.34 ± 2.83 0.53 ± 0.19 0.08 ± 0.00 3.3 ± 0.5 4
 (112.70°e, 35.19°N)   M 48.6 ± 3.3 8.25 ± 1.74 0.53 ± 0.18 0.12 ± 0.27 3.0 ± 0.9 11
Manghe 845 7.7 F 45.8 ± 8.9 5.22 ± 3.06 0.29 ± 0.17 0.05 ± 0.02 3.0 ± 1.0 3
 (112.41°e, 35.30°N)   M 44.4 ± 5.7 6.11 ± 2.40 0.40 ± 0.19 0.12 ± 0.04 3.3 ± 0.6 3
Longgang 1169 9.1 F 38.2 ± 6.1 2.97 ± 1.71 0.19 ± 0.09 0.04 ± 0.03 1.8 ± 0.8 13
 (112.04°e, 35.73°N)   M 37.9 ± 2.4 3.74 ± 1.04 0.23 ± 0.09 0.06 ± 0.03 2.9 ± 0.8 19
Dashanmen 1172 10.3 F 42.7 ± 8.3 4.92 ± 3.48 0.29 ± 0.13 0.04 ± 0.02 3.0 ± 1.1 10
 (108.31°e, 35.86°N)   M 40.4 ± 2.7 4.45 ± 0.92 0.34 ± 0.10 0.05 ± 0.02 2.6 ± 1.1 5
Lianjiabian 1174 9.4 F 42.5 ± 5.8 4.02 ± 1.92 0.24 ± 0.09 0.03 ± 0.02 3.1 ± 1.1 10
 (108.55°e, 36.08°N)   M 42.5 ± 3.3 5.14 ± 1.14 0.41 ± 0.06 0.05 ± 0.02 2.4 ± 1.0 7
Laoshan 273 11.0 F 45.3 ± 6.8 5.13 ± 2.42 0.25 ± 0.11 0.04 ± 0.02 2.7 ± 0.8 12
 (120.60°e, 36.21°N)   M 44.7 ± 4.3 5.52 ± 1.58 0.30 ± 0.12 0.07 ± 0.12 2.9 ± 0.9 16
Kecheng 1365 6.5 F 42.1 ± 9.0 4.66 ± 2.94 0.41 ± 0.23 0.15 ± 0.22 3.1 ± 0.9 15
 (111.24°e, 36.58°N)   M 39.7 ± 5.5 5.03 ± 1.90 0.39 ± 0.18 0.10 ± 0.06 2.8 ± 0.9 25
Huangtu 968 9.5 F 34.9 ± 5.5 2.36 ± 1.25 0.21 ± 0.12 0.02 ± 0.02 2.3 ± 0.7 32
 (111.03°e, 36.62°N)   M 35.8 ± 4.2 3.06 ± 1.12 0.14 ± 0.09 0.03 ± 0.02 2.3 ± 0.8 19
Shangzhuang 1177 7.6 F 40.1 ± 4.9 3.73 ± 1.62 0.25 ± 0.12 0.03 ± 0.03 3.0 ± 1.4 2
 (111.20°e, 36.64°N)   M 40.1 ± 3.9 4.20 ± 1.40 0.19 ± 0.07 0.03 ± 0.02 3.8 ± 0.4 9
Qili 1026 11.3 F 35.9 ± 3.5 2.29 ± 0.91 0.18 ± 0.05 0.01 ± 0.00 2.3 ± 0.9 13
 (110.95°e, 36.75°N)   M 36.3 ± 2.6 3.28 ± 0.79 0.15 ± 0.05 0.03 ± 0.01 2.3 ± 0.9 13
Jiexiu 815 10.2 F 40.2 ± 8.9 4.72 ± 3.18 0.41 ± 0.21 0.05 ± 0.05 * 18
 (112.06°e, 37.07°N)   M 39.5 ± 6.4 4.88 ± 2.27 0.42 ± 0.22 0.09 ± 0.07 * 19
Fangshan 1345 7.2 F 41.9 ± 6.6 4.46 ± 1.96 0.33 ± 0.14 0.04 ± 0.02 2.8 ± 0.8 20
 (111.23°e, 37.18°N)   M 39.3 ± 4.1 4.17 ± 1.15 0.25 ± 0.10 0.05 ± 0.03 2.7 ± 0.7 15
Yantai 112 10.7 F 44.8 ± 7.6 4.41 ± 1.95 0.38 ± 0.23 0.01 ± 0.01 3.6 ± 1.3 10
 (121.74°e, 37.30°N)   M 40.7 ± 4.5 4.37 ± 1.76 0.39 ± 0.16 0.01 ± 0.02 2.9 ± 0.7 20
Jiaoshui 770 10.0 F 44.3 ± 7.8 5.44 ± 3.03 0.40 ± 0.21 0.03 ± 0.02 3.0 ± 1.0 3
 (112.07°e, 37.51°N)   M 37.2 ± 1.7 3.24 ± 0.94 0.21 ± 0.10 0.03 ± 0.01 2.0 ± 0.0 3
Jiaocheng 1257 3.6 F 41.3 ± 6.1 3.86 ± 2.22 0.29 ± 0.13 0.03 ± 0.02 2.9 ± 0.9 22
 (111.79°e, 37.66°N)   M 39.8 ± 3.2 3.89 ± 0.87 0.25 ± 0.09 0.07 ± 0.04 2.7 ± 0.9 27
Pangquangou 1880 4.3 F 51.0 ± 4.1 8.21 ± 1.99 0.71 ± 0.17 0.09 ± 0.04 4.1 ± 0.8 15
 (111.48°e, 37.84°N)   M 46.1 ± 4.0 7.33 ± 1.77 0.70 ± 0.17 0.17 ± 0.05 3.3 ± 0.6 18
Fengjiacun 1429 6.7 F 43.8 ± 7.3 5.54 ± 2.91 0.46 ± 0.24 0.07 ± 0.04 3.2 ± 0.7 13
 (111.34°e, 37.91°N)   M 45.2 ± 3.3 6.59 ± 1.62 0.48 ± 0.12 0.16 ± 0.08 3.0 ± 0.0 11
Dongzhai 1588 5.5 F 42.1 ± 7.6 4.33 ± 2.55 0.32 ± 0.24 0.11 ± 0.21 3.6 ± 0.8 12
 (112.09°e, 38.81°N)   M 39.0 ± 3.1 3.90 ± 0.96 0.33 ± 0.16 0.08 ± 0.03 3.1 ± 0.9 14
Tianchi 1781 4.4 F 42.1 ± 3.5 3.78 ± 1.08 0.25 ± 0.09 0.05 ± 0.02 3.1 ± 0.6 13
 (112.20°e, 38.87°N)   M 42.2 ± 3.3 4.40 ± 0.95 0.36 ± 0.14 0.12 ± 0.02 2.9 ± 0.5 11
Xiayuzhuang 1620 5.3 F 43.5 ± 7.3 4.67 ± 3.29 0.30 ± 0.14 0.06 ± 0.06 3.0 ± 1.2 11
 (112.22°e, 38.92°N)   M 40.6 ± 3.9 5.49 ± 1.97 0.37 ± 0.12 0.10 ± 0.04 3.1 ± 0.8 8
Huairong 991 5.6 F 44.5 ± 5.5 4.85 ± 2.04 0.28 ± 0.14 0.02 ± 0.01 3.2 ± 0.7 13
 (114.51°e, 40.63°N)   M 40.4 ± 4.7 4.16 ± 1.39 0.37 ± 0.18 0.04 ± 0.02 3.1 ± 0.6 20
Meiligeng 1181 5.7 F 48.3 ± 6.6 7.03 ± 2.96 0.42 ± 0.22 0.02 ± 0.02 3.6 ± 1.5 9
 (109.44°e, 40.67°N)   M 41.3 ± 5.4 5.25 ± 2.15 0.34 ± 0.17 0.03 ± 0.02 2.7 ± 0.7 9
Jiufengshan 1321 5.6 F 46.8 ± 7.4 6.06 ± 2.80 0.42 ± 0.18 0.04 ± 0.03 3.8 ± 1.4 8
 (110.68°e, 40.71°N)   M 38.9 ± 3.4 4.34 ± 1.21 0.38 ± 0.10 0.06 ± 0.03 2.9 ± 0.7 42
Wudan 546 6.3 F 46.1 ± 4.6 5.91 ± 2.16 0.31 ± 0.12 0.01 ± 0.01 3.8 ± 0.8 5
 (119.27°e, 43.05°N)   M 41.7 ± 5.2 4.54 ± 1.52 0.27 ± 0.09 0.03 ± 0.02 2.7 ± 0.8 11
Hansaiwula 973 3.3 F 48.5 ± 5.7 6.82 ± 2.33 0.53 ± 0.12 0.03 ± 0.01 3.5 ± 0.5 6
 (118.63°e, 44.25°N)   M 40.1 ± 5.6 4.35 ± 1.81 0.37 ± 0.17 0.15 ± 0.05 3.6 ± 0.7 8



ANN. ZooL. FeNNICI Vol. 48 • Pre-hibernation energy storage by a temperate frog 217

regions, in accordance with findings by Elmberg 
(1991). Elmberg showed that at higher altitudes, 
R. temporaria displayed a higher rate of fat body 
growth in the summer than frogs at lower alti-
tudes. This could be explained by the fact that, 
in anurans, fats are the preferred substrates of 
aerobic metabolism if oxygen is not limiting, and 
are the main source of at least 80% of the energy 
used during hibernation (Tattersall & Ultsch 
2008). Accordingly, the weights of fat bodies of 
R. chensinensis increased with decreasing tem-
perature, which could also be an adaptation to 
prolonged winters in colder regions.
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peratures after controlling for the effects of body 
size and age (Fig. 1 and Table 2). Carcass weight 
tended to decrease with reduced ambient tem-
peratures, but the correlation between these two 
variables was not significant (Fig. 1 and Table 2).

Larger individuals contained more stored 
energy (Table 2), while age showed no measur-
able effect on the relative weights of organs 
(Table 2). Males deposited more energy in fat 
bodies than did females, and differences in 
the weights of fat bodies tended to increase as 
mean annual temperature decreased (Fig. 1 and 
Table 2).

Discussion

Anurans that hibernate in colder climatic con-
ditions accumulate more energy before winter 
(Pasanen & Koskela 1974, Pinder et al. 1992, 
Irwin & Lee 2003, Lu et al. 2008), and even after 
emerging and before breeding (Jӧnsson et al. 
2009). Our findings supported this prediction: R. 
chensinensis stored more energy in colder regions. 
These reserves are used for energy requirements 
during prolonged dormancy and subsequent 
spring reproduction (Fitzpatrick 1976, Lu 2004, 
Lu et al. 2008, Jӧnsson et al. 2009, Jackson & 
Ultsch 2010), and for buffering against uncertain 
environmental conditions (Jӧnsson et al. 2009).

Rana chensinensis had heavier livers 
in colder regions. Similar results in terms of 
geographic variation in energetics have been 
reported by Pasanen and Koskela (1974). They 
showed that the content of glycogen in the liver 
of Rana temporaria increased in colder envi-
ronmental conditions (i.e., further north). The 
aquatic environment generally becomes hypoxic, 
resulting in a greater reliance on glycogen stores 
in the liver to fuel the overwintering period 
(Jackson & Ultsch 2010). During hibernation, 
the liver glycogen content of anurans has been 
shown to reduce by 51% in males and 56% in 
females (Tattersall & Ultsch 2008). Accordingly, 
in R. chensinensis the increase in liver weight 
with decreasing temperature may be an adapta-
tion to the hypoxic aquatic environment in these 
regions with a prolonged winter.

Our results showed that the weight of fat 
bodies of R. chensinensis increased in colder 

Fig. 1. The effect of annual mean temperature on 
mean organ mass in males and females from different 
populations. Solid and dashed lines are fitted lines for 
females and males, respectively. All variables were 
ln-transformed and the data are predictive values from 
the LMMs.
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Relative carcass mass decreased towards 
colder climates for both sexes of R. chensinensis, 
a pattern opposite to that found for the liver and 
fat bodies. Jänsson et al. (2009) also detected a 
similar pattern for female R. temporaria. In R. 
chensinensis, the ovaries continue to develop 
throughout hibernation (Lu 2004), a pattern also 
reported for some temperate species (Maru-
yama 1979, Delgado et al. 1990, Loumbourdis 
& Kyriakopoulou-Sklavounou 1996). Vitel-
logenesis must, therefore, rely on body reserves 
(Delgado et al. 1990, Girish & Saidapur 2000). 
For example, Bradford (1983) reported that R. 
muscosa used more than half of its whole-body 
fat stores (including those in the carcass tissue) 
for gametogenesis and breeding before feeding, 
and used the remaining stores for surviving the 
8-month-long hibernation period. Therefore, we 
can assume that more reserves deposited into 
the carcass tissues by female R. chensinensis in 
warmer regions will be converted into the energy 
expenditures for egg production than will be by 
females in colder regions. In contrast, females of 
some species, including those where a negative 
relationship between body reserves and female 
yearly reproductive effort along environmental 
gradients has been found (e.g. R. temporaria), 
have finished vitellogenesis during hibernation 
(Lu 2004). For male R. chensinensis, the lack of 
support of a trade-off in life history strategies is 

likely because male-male competition during the 
breeding season was not investigated.

Sexual differences in the weights of R. 
chensinensis fat bodies could be explained in 
terms of the timing of energy investment for 
reproduction; most of the fat bodies in females 
are used for ovarian development prior to winter 
(Rastogi et al. 1983), while in males fat reserves 
are used for spring reproductive behaviors 
(Tattersall & Ultsch 2008). Typically, there is 
a direct relationship between fat bodies and 
gonadal growth in females (Chieffi et al. 1975, 
Rastogi et al. 1983, Prasadmurthy & Saidapur 
1987, Delgado et al. 1990, Girish & Saidapur 
2000). For capital breeding anurans, fat bodies in 
mature females are utilized primarily by provid-
ing energy for the developing gonads that occur 
during the late autumn and winter, whereas in 
males, the fat bodies are required for early spring 
calling and breeding activities (Jørgensen et al. 
1979, Jӧnsson et al. 2009). As such, sex differ-
ence in the weights of fat bodies increase with 
decreasing temperatures.

In general, our results indicate that amphib-
ians inhabiting colder environments adopt a 
strategy of accumulating relatively larger energy 
reserves prior to winter, presumably to meet 
energy demands for overwintering and increase 
subsequent reproductive performance in the 
spring. Sex differences may originate from the 

Table 2. Fixed effect results from linear mixed model analyses of variables for Rana chensinensis populations in 
northern China. Se = standard error, 95% HPDI = highest posterior density interval.

Variate effect estimate Se 95% HPDI
    
    Lower Upper

Liver Intercept –10.047 0.500 –11.029 –9.065
 Sex –0.118 0.027 –0.172 –0.064
 SVL 2.439 0.144 2.157 2.721
 Age 0.004 0.022 –0.039 0.046
 Temperature –0.031 0.014 –0.061 –0.002
Fat body Intercept –10.485 1.067 –12.581 –8.388
 Sex –0.619 0.057 –0.731 –0.508
 SVL 2.205 0.300 1.616 2.793
 Age 0.013 0.045 –0.075 0.101
 Temperature –0.097 0.040 –0.181 –0.014
Carcass Intercept –8.917 0.230 –9.368 –8.466
 Sex –0.208 0.013 –0.233 –0.183
 SVL 2.801 0.066 2.671 2.931
 Age 0.014 0.010 –0.006 0.033
 Temperature 0 0.006 –0.012 0.013
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asynchrony of the main energetic investment in 
reproduction between the sexes. Females had 
already invested most of the energy needed 
for reproduction before winter, while the main 
energy investments for males are used for behav-
ioral activities related to attracting mates in 
the spring. Apart from mean annual tempera-
ture, other environmental factors such as winter 
temperature, the duration of winter, and even 
summer temperature, which may lead to higher 
body reserves before winter need to be addressed 
in future studies.
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